Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Apr;113(4):1359–1368. doi: 10.1104/pp.113.4.1359

Requirement for the H phosphoprotein in photosystem II of Chlamydomonas reinhardtii.

E J Summer 1, V H Schmid 1, B U Bruns 1, G W Schmidt 1
PMCID: PMC158259  PMID: 9112780

Abstract

To dissect the expression of the psbB gene cluster of the Chlamydomonas reinhardtii chloroplast genome and to assess the role of the photosystem II H-phosphoprotein (PSII-H) in the biogenesis and/or stabilization of PSII, an aadA gene cassette conferring spectinomycin resistance was employed for mutagenesis. Disruption of the gene cluster has no effect on the abundance of transcripts of the upstream psbB/T locus. Likewise, interruption of psbB/T and psbH with a strong transcriptional terminator from the rbcL gene does not influence transcript accumulation. Thus, psbB/T and psbH may be independently transcribed, and the latter gene seems to have its own promoter in C. reinhardtii. In the absence of PSII-H, translation and thylakoid insertion of chloroplast PSII core proteins is unaffected, but PSII proteins do not accumulate. Because the deletion mutant also exhibits PSII deficiency when dark-grown, the effect is unrelated to photoinhibition. Turnover of proteins B and C of PSII and the polypeptides PSII protein A and PSII protein D is faster than in wild-type cells but is much slower than that observed in other PSII-deficient mutants of C. reinhardtii, suggesting a peripheral location of PSII-H in PSII. The role of PSII-H on PSII assembly was examined by sucrose gradient fractionation of pulse-labeled thylakoids; the accumulation of high-molecular-weight forms of PSII is severely impaired in the psbH deletion mutant. Thus, a primary role of PSII-H may be to facilitate PSII assembly/stability through dimerization. PSII-H phosphorylation, which possibly occurs at two sites, may also be germane to its role in regulating PSII structure, stabilization, or activity.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Mawgood A. L., Dilley R. A. Cloning and nucleotide sequence of the psbH gene from cyanobacterium Synechocystis 6803. Plant Mol Biol. 1990 Mar;14(3):445–446. doi: 10.1007/BF00028780. [DOI] [PubMed] [Google Scholar]
  2. Allen J. F. Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta. 1992 Jan 22;1098(3):275–335. doi: 10.1016/s0005-2728(09)91014-3. [DOI] [PubMed] [Google Scholar]
  3. Bassi R., Simpson D. Chlorophyll-protein complexes of barley photosystem I. Eur J Biochem. 1987 Mar 2;163(2):221–230. doi: 10.1111/j.1432-1033.1987.tb10791.x. [DOI] [PubMed] [Google Scholar]
  4. Blowers A. D., Klein U., Ellmore G. S., Bogorad L. Functional in vivo analyses of the 3' flanking sequences of the Chlamydomonas chloroplast rbcL and psaB genes. Mol Gen Genet. 1993 Apr;238(3):339–349. doi: 10.1007/BF00291992. [DOI] [PubMed] [Google Scholar]
  5. Boekema E. J., Hankamer B., Bald D., Kruip J., Nield J., Boonstra A. F., Barber J., Rögner M. Supramolecular structure of the photosystem II complex from green plants and cyanobacteria. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):175–179. doi: 10.1073/pnas.92.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boynton J. E., Gillham N. W. Chloroplast transformation in Chlamydomonas. Methods Enzymol. 1993;217:510–536. doi: 10.1016/0076-6879(93)17087-l. [DOI] [PubMed] [Google Scholar]
  7. Goldschmidt-Clermont M. Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of chlamydomonas. Nucleic Acids Res. 1991 Aug 11;19(15):4083–4089. doi: 10.1093/nar/19.15.4083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ikeuchi M., Eggers B., Shen G. Z., Webber A., Yu J. J., Hirano A., Inoue Y., Vermaas W. Cloning of the psbK gene from Synechocystis sp. PCC 6803 and characterization of photosystem II in mutants lacking PSII-K. J Biol Chem. 1991 Jun 15;266(17):11111–11115. [PubMed] [Google Scholar]
  9. Ikeuchi M., Inoue Y. A new photosystem II reaction center component (4.8 kDa protein) encoded by chloroplast genome. FEBS Lett. 1988 Dec 5;241(1-2):99–104. doi: 10.1016/0014-5793(88)81039-1. [DOI] [PubMed] [Google Scholar]
  10. Ikeuchi M., Plumley F. G., Inoue Y., Schmidt G. W. Phosphorylation of Photosystem II Components, CP43 Apoprotein, D1, D2, and 10 to 11 Kilodalton Protein in Chloroplast Thylakoids of Higher Plants. Plant Physiol. 1987 Nov;85(3):638–642. doi: 10.1104/pp.85.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jensen K. H., Herrin D. L., Plumley F. G., Schmidt G. W. Biogenesis of photosystem II complexes: transcriptional, translational, and posttranslational regulation. J Cell Biol. 1986 Oct;103(4):1315–1325. doi: 10.1083/jcb.103.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnson C. H., Schmidt G. W. The psbB gene cluster of the Chlamydomonas reinhardtii chloroplast: sequence and transcriptional analyses of psbN and psbH. Plant Mol Biol. 1993 Jul;22(4):645–658. doi: 10.1007/BF00047405. [DOI] [PubMed] [Google Scholar]
  13. Komenda J., Barber J. Comparison of psbO and psbH deletion mutants of Synechocystis PCC 6803 indicates that degradation of D1 protein is regulated by the QB site and dependent on protein synthesis. Biochemistry. 1995 Jul 25;34(29):9625–9631. doi: 10.1021/bi00029a040. [DOI] [PubMed] [Google Scholar]
  14. Künstner P., Guardiola A., Takahashi Y., Rochaix J. D. A mutant strain of Chlamydomonas reinhardtii lacking the chloroplast photosystem II psbI gene grows photoautotrophically. J Biol Chem. 1995 Apr 21;270(16):9651–9654. doi: 10.1074/jbc.270.16.9651. [DOI] [PubMed] [Google Scholar]
  15. Mayers S. R., Dubbs J. M., Vass I., Hideg E., Nagy L., Barber J. Further characterization of the psbH locus of Synechocystis sp. PCC 6803: inactivation of psbH impairs QA to QB electron transport in photosystem 2. Biochemistry. 1993 Feb 16;32(6):1454–1465. doi: 10.1021/bi00057a008. [DOI] [PubMed] [Google Scholar]
  16. Mayes S. R., Barber J. Primary structure of the psbN-psbH-petC-petA gene cluster of the cyanobacterium Synechocystis PCC 6803. Plant Mol Biol. 1991 Aug;17(2):289–293. doi: 10.1007/BF00039508. [DOI] [PubMed] [Google Scholar]
  17. Michel H., Hunt D. F., Shabanowitz J., Bennett J. Tandem mass spectrometry reveals that three photosystem II proteins of spinach chloroplasts contain N-acetyl-O-phosphothreonine at their NH2 termini. J Biol Chem. 1988 Jan 25;263(3):1123–1130. [PubMed] [Google Scholar]
  18. Monod C., Takahashi Y., Goldschmidt-Clermont M., Rochaix J. D. The chloroplast ycf8 open reading frame encodes a photosystem II polypeptide which maintains photosynthetic activity under adverse growth conditions. EMBO J. 1994 Jun 15;13(12):2747–2754. doi: 10.1002/j.1460-2075.1994.tb06568.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mullet J. E. The amino acid sequence of the polypeptide segment which regulates membrane adhesion (grana stacking) in chloroplasts. J Biol Chem. 1983 Aug 25;258(16):9941–9948. [PubMed] [Google Scholar]
  20. Packham N. K. Is the 9 kDa thylakoid membrane phosphoprotein functionally and structurally analogous to the 'H' subunit of bacterial reaction centres? FEBS Lett. 1988 Apr 25;231(2):284–290. doi: 10.1016/0014-5793(88)80835-4. [DOI] [PubMed] [Google Scholar]
  21. Race H. L., Gounaris K. Identification of the psbH gene product as a 6 kDa phosphoprotein in the cyanobacterium Synechocystis 6803. FEBS Lett. 1993 May 24;323(1-2):35–39. doi: 10.1016/0014-5793(93)81443-4. [DOI] [PubMed] [Google Scholar]
  22. Schmidt G. W., Matlin K. S., Chua N. H. A rapid procedure for selective enrichment of photosynthetic electron transport mutants. Proc Natl Acad Sci U S A. 1977 Feb;74(2):610–614. doi: 10.1073/pnas.74.2.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sieburth L. E., Berry-Lowe S., Schmidt G. W. Chloroplast RNA Stability in Chlamydomonas: Rapid Degradation of psbB and psbC Transcripts in Two Nuclear Mutants. Plant Cell. 1991 Feb;3(2):175–189. doi: 10.1105/tpc.3.2.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Silverstein T., Cheng L., Allen J. F. Chloroplast thylakoid protein phosphatase reactions are redox-independent and kinetically heterogeneous. FEBS Lett. 1993 Nov 8;334(1):101–105. doi: 10.1016/0014-5793(93)81690-2. [DOI] [PubMed] [Google Scholar]
  25. Sokolenko A., Fulgosi H., Gal A., Altschmied L., Ohad I., Herrmann R. G. The 64 kDa polypeptide of spinach may not be the LHCII kinase, but a lumen-located polyphenol oxidase. FEBS Lett. 1995 Sep 4;371(2):176–180. doi: 10.1016/0014-5793(95)00892-d. [DOI] [PubMed] [Google Scholar]
  26. Sturm N. R., Kuras R., Büschlen S., Sakamoto W., Kindle K. L., Stern D. B., Wollman F. A. The petD gene is transcribed by functionally redundant promoters in Chlamydomonas reinhardtii chloroplasts. Mol Cell Biol. 1994 Sep;14(9):6171–6179. doi: 10.1128/mcb.14.9.6171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Takahashi Y., Matsumoto H., Goldschmidt-Clermont M., Rochaix J. D. Directed disruption of the Chlamydomonas chloroplast psbK gene destabilizes the photosystem II reaction center complex. Plant Mol Biol. 1994 Mar;24(5):779–788. doi: 10.1007/BF00029859. [DOI] [PubMed] [Google Scholar]
  28. Wollman F. A., Delepelaire P. Correlation between changes in light energy distribution and changes in thylakoid membrane polypeptide phosphorylation in Chlamydomonas reinhardtii. J Cell Biol. 1984 Jan;98(1):1–7. doi: 10.1083/jcb.98.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. de Vitry C., Olive J., Drapier D., Recouvreur M., Wollman F. A. Posttranslational events leading to the assembly of photosystem II protein complex: a study using photosynthesis mutants from Chlamydomonas reinhardtii. J Cell Biol. 1989 Sep;109(3):991–1006. doi: 10.1083/jcb.109.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES