Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Apr;113(4):1385–1393. doi: 10.1104/pp.113.4.1385

Novel Phosphoinositides in Barley Aleurone Cells (Additional Evidence for the Presence of Phosphatidyl-scyllo-Inositol).

B Narasimhan 1, G Pliska-Matyshak 1, R Kinnard 1, S Carstensen 1, M A Ritter 1, L Von Weymarn 1, PPN Murthy 1
PMCID: PMC158262  PMID: 12223679

Abstract

A novel isomer of phosphatidylinositol that differs in the structure of the head group was detected in barley (Hordeum vulgare cv Himalaya) seeds. In this paper we describe our efforts to elucidate the structure of the novel isomer. Evidence from a variety of techniques, including chemical modification of in vivo 32Pi- and myo-[3H]inositol-labeled compounds, gas chromatography-mass spectrometry analysis, in vivo incorporation of scyllo-[3H]inositol, and enzymatic studies that suggest that the structure is phosphatidylscyllo-inositol (scyllo-PI), is presented. The use of microwave energy to significantly enhance the slow rate of hydrolysis of phosphoinositides is described. The presence of scyllo-PI can be easily overlooked by the methods commonly employed; therefore, experimental considerations important for the detection of scyllo-PI are discussed.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrientos L. G., Murthy P. P. Conformational studies of myo-inositol phosphates. Carbohydr Res. 1996 Dec 24;296:39–54. doi: 10.1016/s0008-6215(96)00250-9. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  3. Brearley C. A., Hanke D. E. Phosphoinositides in Barley (Hordeum vulgare L.) Aleurone Tissue. Plant Physiol. 1994 Apr;104(4):1381–1384. doi: 10.1104/pp.104.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carter H. E., Strobach D. R., Hawthorne J. N. Biochemistry of the sphingolipids. 18. Complete structure of tetrasaccharide phytoglycolipid. Biochemistry. 1969 Jan;8(1):383–388. doi: 10.1021/bi00829a053. [DOI] [PubMed] [Google Scholar]
  5. Cho M. H., Tan Z., Erneux C., Shears S. B., Boss W. F. The effects of mastoparan on the carrot cell plasma membrane polyphosphoinositide phospholipase C. Plant Physiol. 1995 Mar;107(3):845–856. doi: 10.1104/pp.107.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clarke N. G., Dawson R. M. Alkaline O leads to N-transacylation. A new method for the quantitative deacylation of phospholipids. Biochem J. 1981 Apr 1;195(1):301–306. doi: 10.1042/bj1950301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dean N. M., Moyer J. D. Separation of multiple isomers of inositol phosphates formed in GH3 cells. Biochem J. 1987 Mar 1;242(2):361–366. doi: 10.1042/bj2420361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drobak B. K. Plant Phosphoinositides and Intracellular Signaling. Plant Physiol. 1993 Jul;102(3):705–709. doi: 10.1104/pp.102.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Futerman A. H., Low M. G., Ackermann K. E., Sherman W. R., Silman I. Identification of covalently bound inositol in the hydrophobic membrane-anchoring domain of Torpedo acetylcholinesterase. Biochem Biophys Res Commun. 1985 May 31;129(1):312–317. doi: 10.1016/0006-291x(85)91439-1. [DOI] [PubMed] [Google Scholar]
  10. Griffith O. H., Volwerk J. J., Kuppe A. Phosphatidylinositol-specific phospholipases C from Bacillus cereus and Bacillus thuringiensis. Methods Enzymol. 1991;197:493–502. doi: 10.1016/0076-6879(91)97175-x. [DOI] [PubMed] [Google Scholar]
  11. Hipps P. P., Holland W. H., Sherman W. R. Interconversion of myo- and scyllo-inositol with simultaneous formation of neo-inositol by an NADP+ dependent epimerase from bovine brain. Biochem Biophys Res Commun. 1977 Jul 11;77(1):340–346. doi: 10.1016/s0006-291x(77)80202-7. [DOI] [PubMed] [Google Scholar]
  12. Kingston H. M., Jassie L. B. Microwave energy for acid decomposition at elevated temperatures and pressures using biological and botanical samples. Anal Chem. 1986 Oct;58(12):2534–2541. doi: 10.1021/ac00125a038. [DOI] [PubMed] [Google Scholar]
  13. Kinnard R. L., Narasimhan B., Pliska-Matyshak G., Murthy P. P. Characterization of scyllo-inositol-containing phosphatidylinositol in plant cells. Biochem Biophys Res Commun. 1995 May 16;210(2):549–555. doi: 10.1006/bbrc.1995.1695. [DOI] [PubMed] [Google Scholar]
  14. Laine R. A., Hsieh T. C. Inositol-containing sphingolipids. Methods Enzymol. 1987;138:186–195. doi: 10.1016/0076-6879(87)38015-2. [DOI] [PubMed] [Google Scholar]
  15. Larner J., Huang L. C., Schwartz C. F., Oswald A. S., Shen T. Y., Kinter M., Tang G. Z., Zeller K. Rat liver insulin mediator which stimulates pyruvate dehydrogenase phosphate contains galactosamine and D-chiroinositol. Biochem Biophys Res Commun. 1988 Mar 30;151(3):1416–1426. doi: 10.1016/s0006-291x(88)80520-5. [DOI] [PubMed] [Google Scholar]
  16. Low M. G., Futerman A. H., Ackermann K. E., Sherman W. R., Silman I. Removal of covalently bound inositol from Torpedo acetylcholinesterase and mammalian alkaline phosphatases by deamination with nitrous acid. Evidence for a common membrane-anchoring structure. Biochem J. 1987 Jan 15;241(2):615–619. doi: 10.1042/bj2410615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mato J. M., Kelly K. L., Abler A., Jarett L. Identification of a novel insulin-sensitive glycophospholipid from H35 hepatoma cells. J Biol Chem. 1987 Feb 15;262(5):2131–2137. [PubMed] [Google Scholar]
  18. Murthy P. P., Pliska-Matyshak G., Keranen L. M., Lam P., Mueller H. H., Bhuvarahamurthy N. Evidence of two isomers of phosphatidylinositol in plant tissue. Plant Physiol. 1992 Apr;98(4):1498–1501. doi: 10.1104/pp.98.4.1498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Murthy P. P., Renders J. M., Keranen L. M. Phosphoinositides in barley aleurone layers and gibberellic Acid-induced changes in metabolism. Plant Physiol. 1989 Dec;91(4):1266–1269. doi: 10.1104/pp.91.4.1266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nicholson J. R., Savory M. G., Savory J., Wills M. R. Micro-quantity tissue digestion for metal measurements by use of a microwave acid-digestion bomb. Clin Chem. 1989 Mar;35(3):488–490. [PubMed] [Google Scholar]
  21. Pak Y., Larner J. Identification and characterization of chiroinositol-containing phospholipids from bovine liver. Biochem Biophys Res Commun. 1992 Apr 30;184(2):1042–1047. doi: 10.1016/0006-291x(92)90696-i. [DOI] [PubMed] [Google Scholar]
  22. Smith S. W., Lester R. L. Inositol phosphorylceramide, a novel substance and the chief member of a major group of yeast sphingolipids containing a single inositol phosphate. J Biol Chem. 1974 Jun 10;249(11):3395–3405. [PubMed] [Google Scholar]
  23. Sundler R., Alberts A. W., Vagelos P. R. Enzymatic properties of phosphatidylinositol inositolphosphohydrolase from Bacillus cereus. Substrate dilution in detergent-phospholipid micelles and bilayer vesicles. J Biol Chem. 1978 Jun 25;253(12):4175–4179. [PubMed] [Google Scholar]
  24. TOMLINSON R. V., BALLOU C. E. Complete characterization of the myo-inositol polyphosphates from beef brain phosphoinositide. J Biol Chem. 1961 Jul;236:1902–1906. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES