Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Apr;113(4):1405–1412. doi: 10.1104/pp.113.4.1405

Localization of Pectic Galactan in Tomato Cell Walls Using a Monoclonal Antibody Specific to (1[->]4)-[beta]-D-Galactan.

L Jones 1, G B Seymour 1, J P Knox 1
PMCID: PMC158264  PMID: 12223681

Abstract

To develop antibody probes for the neutral side chains of pectins, antisera were generated to a pectic galactan isolated from tomato (Lycopersicon esculentum) pericarp cell walls and to a (1[->]4)-[beta]-galactotetraose-bovine serum albumin neoglycoprotein. The use of these two antisera in immunochemical assays and immunolocalization studies indicated that they had very similar specificities. A monoclonal antibody (LM5) was isolated and characterized subsequent to immunization with the neoglycoprotein. Hapten inhibition studies revealed that the antibody specifically recognized more than three contiguous units of (1[->]4)-[beta]-galactosyl residues. The antigalactan antibody was used to immunolocalize the galactan side chains of pectin in tomato fruit pericarp and tomato petiole cell walls. Although the LM5 epitope occurs in most cell walls of the tomato fruit, it was absent from both the locular gel and the epidermal and subepidermal cells. Furthermore, in contrast to other anti-pectin antibodies, LM5 did not label the cell wall thickenings of tomato petiole collenchyma.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An J., O'Neill M. A., Albersheim P., Darvill A. G. Isolation and structural characterization of beta-D-glucosyluronic acid and 4-O-methyl beta-D-glucosyluronic acid-containing oligosaccharides from the cell-wall pectic polysaccharide, rhamnogalacturonan I. Carbohydr Res. 1994 Jan 15;252:235–243. doi: 10.1016/0008-6215(94)90018-3. [DOI] [PubMed] [Google Scholar]
  2. Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973 Aug;54(2):484–489. doi: 10.1016/0003-2697(73)90377-1. [DOI] [PubMed] [Google Scholar]
  3. Campbell A. D., Labavitch J. M. Induction and regulation of ethylene biosynthesis and ripening by pectic oligomers in tomato pericarp discs. Plant Physiol. 1991 Oct;97(2):706–713. doi: 10.1104/pp.97.2.706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carey A. T., Holt K., Picard S., Wilde R., Tucker G. A., Bird C. R., Schuch W., Seymour G. B. Tomato exo-(1-->4)-beta-D-galactanase. Isolation, changes during ripening in normal and mutant tomato fruit, and characterization of a related cDNA clone. Plant Physiol. 1995 Jul;108(3):1099–1107. doi: 10.1104/pp.108.3.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carrington CMS., Greve L. C., Labavitch J. M. Cell Wall Metabolism in Ripening Fruit (VI. Effect of the Antisense Polygalacturonase Gene on Cell Wall Changes Accompanying Ripening in Transgenic Tomatoes). Plant Physiol. 1993 Oct;103(2):429–434. doi: 10.1104/pp.103.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheng G. W., Huber D. J. Alterations in Structural Polysaccharides during Liquefaction of Tomato Locule Tissue. Plant Physiol. 1996 Jun;111(2):447–457. doi: 10.1104/pp.111.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gross K. C., Wallner S. J. Degradation of Cell Wall Polysaccharides during Tomato Fruit Ripening. Plant Physiol. 1979 Jan;63(1):117–120. doi: 10.1104/pp.63.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Labavitch J. M., Ray P. M. Turnover of cell wall polysaccharides in elongating pea stem segments. Plant Physiol. 1974 May;53(5):669–673. doi: 10.1104/pp.53.5.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Liners F., Letesson J. J., Didembourg C., Van Cutsem P. Monoclonal Antibodies against Pectin: Recognition of a Conformation Induced by Calcium. Plant Physiol. 1989 Dec;91(4):1419–1424. doi: 10.1104/pp.91.4.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McNeil M., Darvill A. G., Albersheim P. Structure of Plant Cell Walls : XII. Identification of Seven Differently Linked Glycosyl Residues Attached to O-4 of the 2,4-Linked l-Rhamnosyl Residues of Rhamnogalacturonan I. Plant Physiol. 1982 Dec;70(6):1586–1591. doi: 10.1104/pp.70.6.1586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pressey R. beta-Galactosidases in Ripening Tomatoes. Plant Physiol. 1983 Jan;71(1):132–135. doi: 10.1104/pp.71.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Puhlmann J., Bucheli E., Swain M. J., Dunning N., Albersheim P., Darvill A. G., Hahn M. G. Generation of monoclonal antibodies against plant cell-wall polysaccharides. I. Characterization of a monoclonal antibody to a terminal alpha-(1-->2)-linked fucosyl-containing epitope. Plant Physiol. 1994 Feb;104(2):699–710. doi: 10.1104/pp.104.2.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schols H. A., Vierhuis E., Bakx E. J., Voragen A. G. Different populations of pectic hairy regions occur in apple cell walls. Carbohydr Res. 1995 Oct 2;275(2):343–360. doi: 10.1016/0008-6215(95)00155-m. [DOI] [PubMed] [Google Scholar]
  14. Schols H. A., Voragen A. G., Colquhoun I. J. Isolation and characterization of rhamnogalacturonan oligomers, liberated during degradation of pectic hairy regions by rhamnogalacturonase. Carbohydr Res. 1994 Mar 18;256(1):97–111. doi: 10.1016/0008-6215(94)84230-2. [DOI] [PubMed] [Google Scholar]
  15. Steffan W., Kovác P., Albersheim P., Darvill A. G., Hahn M. G. Characterization of a monoclonal antibody that recognizes an arabinosylated (1-->6)-beta-D-galactan epitope in plant complex carbohydrates. Carbohydr Res. 1995 Oct 2;275(2):295–307. doi: 10.1016/0008-6215(95)00174-r. [DOI] [PubMed] [Google Scholar]
  16. Tucker G. A., Robertson N. G., Grierson D. Changes in polygalacturonase isoenzymes during the 'ripening' of normal and mutant tomato fruit. Eur J Biochem. 1980 Nov;112(1):119–124. doi: 10.1111/j.1432-1033.1980.tb04993.x. [DOI] [PubMed] [Google Scholar]
  17. Varner J. E., Ye Z. Tissue printing. FASEB J. 1994 Apr 1;8(6):378–384. doi: 10.1096/fasebj.8.6.8168688. [DOI] [PubMed] [Google Scholar]
  18. Whitcombe A. J., O'Neill M. A., Steffan W., Albersheim P., Darvill A. G. Structural characterization of the pectic polysaccharide, rhamnogalacturonan-II. Carbohydr Res. 1995 Jul 10;271(1):15–29. doi: 10.1016/0008-6215(94)00002-w. [DOI] [PubMed] [Google Scholar]
  19. Williams M. N., Freshour G., Darvill A. G., Albersheim P., Hahn M. G. An antibody Fab selected from a recombinant phage display library detects deesterified pectic polysaccharide rhamnogalacturonan II in plant cells. Plant Cell. 1996 Apr;8(4):673–685. doi: 10.1105/tpc.8.4.673. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES