Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Apr;113(4):1447–1455. doi: 10.1104/pp.113.4.1447

The organization of the actin cytoskeleton in vertical and graviresponding primary roots of maize.

E B Blancaflor 1, K H Hasenstein 1
PMCID: PMC158269  PMID: 11536803

Abstract

To determine whether actin microfilament (MF) organization is correlated with differential elongation, primary roots of Zea mays cv Merit maintained vertically or reoriented horizontally for 15 to 120 min were stained with rhodamine phalloidin and examined with a confocal microscope. Root curvature was measured with a computer-controlled video digitizer. In vertical roots bundles of MFs in the elongation and maturation zone were oriented parallel to the longitudinal axis of cells. MFs in the vascular parenchyma cells were more abundant than in the cortex and epidermis. Epidermal and proendodermal cells in the meristematic region contained transverse cortical MFs. The organization of MFs of graviresponding roots was similar to that of vertical roots. Application of cytochalasin B or cytochalasin D resulted in extensive disruption of MFs in the cortex and epidermis, but only partially affected MFs in the stele. Despite the cytochalasin B-induced depolymerization of MFs, gravicurvature exceeded that of controls. In contrast, the auxin transport inhibitor N-1 naphthylphthalamic acid suppressed root curvature but had no observable effect on the integrity of the MFs. The data indicate that MFs may not be involved in the graviresponse of maize roots.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baluska F., Hauskrecht M., Barlow P. W., Sievers A. Gravitropism of the primary root of maize: a complex pattern of differential cellular growth in the cortex independent of the microtubular cytoskeleton. Planta. 1996 Feb;198(2):310–318. doi: 10.1007/BF00206258. [DOI] [PubMed] [Google Scholar]
  2. Bernasconi P., Patel B. C., Reagan J. D., Subramanian M. V. The N-1-Naphthylphthalamic Acid-Binding Protein Is an Integral Membrane Protein. Plant Physiol. 1996 Jun;111(2):427–432. doi: 10.1104/pp.111.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blancaflor E. B., Hasenstein K. H. Time course and auxin sensitivity of cortical microtubule reorientation in maize roots. Protoplasma. 1995;185:72–82. doi: 10.1007/BF01272755. [DOI] [PubMed] [Google Scholar]
  4. Cooper J. A. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987 Oct;105(4):1473–1478. doi: 10.1083/jcb.105.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cox D. N., Muday G. K. NPA binding activity is peripheral to the plasma membrane and is associated with the cytoskeleton. Plant Cell. 1994 Dec;6(12):1941–1953. doi: 10.1105/tpc.6.12.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Evans M. L., Young L. M., Hasenstein K. H. The role of calcium in the regulation of hormone transport in gravistimulated roots. Adv Space Res. 1992;12(1):211–218. doi: 10.1016/0273-1177(92)90285-6. [DOI] [PubMed] [Google Scholar]
  7. Grabski S., Schindler M. Auxins and Cytokinins as Antipodal Modulators of Elasticity within the Actin Network of Plant Cells. Plant Physiol. 1996 Mar;110(3):965–970. doi: 10.1104/pp.110.3.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hasenstein K. H., Evans M. L. Effects of cations on hormone transport in primary roots of Zea mays. Plant Physiol. 1988;86:890–894. doi: 10.1104/pp.86.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hasenstein K. H. Measurement of circumnutation in maize roots. Microgravity Sci Technol. 1991;4(4):262–266. [PubMed] [Google Scholar]
  10. Ishikawa H., Evans M. L. The role of the distal elongation zone in the response of maize roots to auxin and gravity. Plant Physiol. 1993 Aug;102(4):1203–1210. doi: 10.1104/pp.102.4.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ishikawa H., Hasenstein K. H., Evans M. L. Computer-based video digitizer analysis of surface extension in maize roots: kinetics of growth rate changes during gravitropism. Planta. 1991 Feb;183(3):381–390. doi: 10.1007/BF00197737. [DOI] [PubMed] [Google Scholar]
  12. Lee J. S., Mulkey T. J., Evans M. L. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors. Planta. 1984;160:536–543. [PubMed] [Google Scholar]
  13. Luna E. J., Hitt A. L. Cytoskeleton--plasma membrane interactions. Science. 1992 Nov 6;258(5084):955–964. doi: 10.1126/science.1439807. [DOI] [PubMed] [Google Scholar]
  14. Masson P. H. Root gravitropism. Bioessays. 1995 Feb;17(2):119–127. doi: 10.1002/bies.950170207. [DOI] [PubMed] [Google Scholar]
  15. Nelson A. J., Evans M. L. Analysis of growth patterns during gravitropic curvature in roots of Zea mays by use of a computer-based video digitizer. J Plant Growth Regul. 1986;5:73–83. doi: 10.1007/BF02025958. [DOI] [PubMed] [Google Scholar]
  16. Pesacreta T. C., Carley W. W., Webb W. W., Parthasarathy M. V. F-actin in conifer roots. Proc Natl Acad Sci U S A. 1982 May;79(9):2898–2901. doi: 10.1073/pnas.79.9.2898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schliwa M. Action of cytochalasin D on cytoskeletal networks. J Cell Biol. 1982 Jan;92(1):79–91. doi: 10.1083/jcb.92.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Seagull R. W., Falconer M. M., Weerdenburg C. A. Microfilaments: dynamic arrays in higher plant cells. J Cell Biol. 1987 Apr;104(4):995–1004. doi: 10.1083/jcb.104.4.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Traas J. A., Doonan J. H., Rawlins D. J., Shaw P. J., Watts J., Lloyd C. W. An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus. J Cell Biol. 1987 Jul;105(1):387–395. doi: 10.1083/jcb.105.1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vaughan M. A., Vaughn K. C. Effects of microfilament disrupters on microfilament distribution and morphology in maize root cells. Histochemistry. 1987;87(2):129–137. doi: 10.1007/BF00533397. [DOI] [PubMed] [Google Scholar]
  21. Walker L. M., Sack F. D. Microfilament distribution in protonemata of the moss Ceratodon. Protoplasma. 1995;189(3-4):229–237. doi: 10.1007/BF01280177. [DOI] [PubMed] [Google Scholar]
  22. Wendt M., Kuo-Huang L. L., Sievers A. Gravitropic bending of cress roots without contact between amyloplasts and complexes of endoplasmic reticulum. Planta. 1987 Nov;172(3):321–329. doi: 10.1007/BF00398660. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES