Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 May;114(1):39–45. doi: 10.1104/pp.114.1.39

The Cytosolic Ca2+ Concentration Gradient of Sinapis alba Root Hairs as Revealed by Ca2+-Selective Microelectrode Tests and Fura-Dextran Ratio Imaging.

H H Felle 1, P K Hepler 1
PMCID: PMC158276  PMID: 12223687

Abstract

Using Ca2+-selective microelectrodes and fura 2-dextran ratio imaging, the cytosolic free [Ca2+] was measured in Sinapis alba root hair cells. Both methods yielded comparable results, i.e. values between 158 to 251 nM for the basal [Ca2+] of the cells and an elevated [Ca2+] of 446 to 707 nM in the tip region. The zone of elevated [Ca2+] reaches 40 to 60 [mu]m into the cell and is congruent with the region of inwardly directed Ca2+ net currents measured with an external Ca2+- selective vibrating electrode. The channel-blocker La3+ eliminates these currents, stops growth, and almost completely eliminates the cytosolic [Ca2+] gradient without affecting the basal level of the ion. Growth is also inhibited by pressure-injected dibromo-1,2-bis(o-aminophenoxy)ethane-N,N,N[prime],N[prime]-tetraacetic acid, which causes a decrease in the [Ca2+] in the tip in a concentration-dependent manner. Indole-3-acetic acid, used as a model stimulus, decreases cytosolic free [Ca2+] by 0.2 to 0.3 pCa units in the tip, but only by about 0.1 pCa unit in the shank. Nongrowing root hairs may or may not display a [Ca2+] gradient, but still reversibly respond to external stimuli such as La3+, Ca2+, or indole-3-acetic acid with changes in cytosolic free [Ca2+]. During short time periods, dicyclohexylcarbodiimide inhibition of the plasma membrane H+-ATPase, which stops growth, does not abolish the [Ca2+] gradient, nor does it change significantly the basal [Ca2+] level. We conclude that the cytosolic [Ca2+] gradient and an elevated [Ca2+] in the tip, as in other tip-growing cells, is essential for tip growth in root hairs; however, its presence does not indicate growth under all circumstances. We argue that with respect to Ca2+, tip growth regulation and responses to external signals may not interfere with each other. Finally, we suggest that the combination of the methods applied adds considerably to our understanding of the role of cytosolic free [Ca2+] in signal transduction and cellular growth.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolsover S., Silver R. A. Artifacts in calcium measurement: recognition and remedies. Trends Cell Biol. 1991 Aug;1(2-3):71–74. doi: 10.1016/0962-8924(91)90093-o. [DOI] [PubMed] [Google Scholar]
  2. Bush D. S. Regulation of Cytosolic Calcium in Plants. Plant Physiol. 1993 Sep;103(1):7–13. doi: 10.1104/pp.103.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Felle H. Ca-selective microelectrodes and their application to plant cells and tissues. Plant Physiol. 1989 Dec;91(4):1239–1242. doi: 10.1104/pp.91.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gibbon B. C., Kropf D. L. Cytosolic pH Gradients Associated with Tip Growth. Science. 1994 Mar 11;263(5152):1419–1421. doi: 10.1126/science.263.5152.1419. [DOI] [PubMed] [Google Scholar]
  5. Jackson S. L., Heath I. B. Roles of calcium ions in hyphal tip growth. Microbiol Rev. 1993 Jun;57(2):367–382. doi: 10.1128/mr.57.2.367-382.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jaffe L. A., Weisenseel M. H., Jaffe L. F. Calcium accumulations within the growing tips of pollen tubes. J Cell Biol. 1975 Nov;67(2PT1):488–492. doi: 10.1083/jcb.67.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Levina N. N., Lew R. R., Hyde G. J., Heath I. B. The roles of Ca2+ and plasma membrane ion channels in hyphal tip growth of Neurospora crassa. J Cell Sci. 1995 Nov;108(Pt 11):3405–3417. doi: 10.1242/jcs.108.11.3405. [DOI] [PubMed] [Google Scholar]
  8. Malho R., Read N. D., Trewavas A. J., Pais M. S. Calcium Channel Activity during Pollen Tube Growth and Reorientation. Plant Cell. 1995 Aug;7(8):1173–1184. doi: 10.1105/tpc.7.8.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Obermeyer G., Weisenseel M. H. Calcium channel blocker and calmodulin antagonists affect the gradient of free calcium ions in lily pollen tubes. Eur J Cell Biol. 1991 Dec;56(2):319–327. [PubMed] [Google Scholar]
  10. Pierson E. S., Miller D. D., Callaham D. A., Shipley A. M., Rivers B. A., Cresti M., Hepler P. K. Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell. 1994 Dec;6(12):1815–1828. doi: 10.1105/tpc.6.12.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pierson E. S., Miller D. D., Callaham D. A., van Aken J., Hackett G., Hepler P. K. Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol. 1996 Feb 25;174(1):160–173. doi: 10.1006/dbio.1996.0060. [DOI] [PubMed] [Google Scholar]
  12. Rathore K. S., Cork R. J., Robinson K. R. A cytoplasmic gradient of Ca2+ is correlated with the growth of lily pollen tubes. Dev Biol. 1991 Dec;148(2):612–619. doi: 10.1016/0012-1606(91)90278-b. [DOI] [PubMed] [Google Scholar]
  13. Taylor A. R., Manison NFH., Fernandez C., Wood J., Brownlee C. Spatial Organization of Calcium Signaling Involved in Cell Volume Control in the Fucus Rhizoid. Plant Cell. 1996 Nov;8(11):2015–2031. doi: 10.1105/tpc.8.11.2015. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES