Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 May;114(1):55–62. doi: 10.1104/pp.114.1.55

The Spatial Distribution of Sucrose Synthase Isozymes in Barley.

J Guerin 1, P Carbonero 1
PMCID: PMC158278  PMID: 12223688

Abstract

The sucrose (Suc) synthase enzyme purified from barley (Hordeum vulgare L.) roots is a homotetramer that is composed of 90-kD type 1 Suc synthase (SS1) subunits. Km values for Suc and UDP were 30 mM and 5 [mu]M, respectively. This enzyme can also utilize ADP at 25% of the UDP rate. Anti-SS1 polyclonal antibodies, which recognized both SS1 and type 2 Suc synthase (SS2) (88-kD) subunits, and antibodies raised against a synthetic peptide, LANGSTDNNFV, which were specific for SS2, were used to study the spatial distribution of these subunits by immunoblot analysis and immunolocalization. Both SS1 and SS2 were abundantly expressed in endosperm, where they polymerize to form the five possible homo- and heterotetramers. Only SS1 homotetramers were detected in young leaves, where they appeared exclusively in phloem cells, and in roots, where expression was associated with cap cells and the vascular bundle. In the seed both SS1 and SS2 were present in endosperm, but only SS1 was apparent in the chalazal region, the nucellar projection, and the vascular bundle. The physiological implications for the difference in expression patterns observed are discussed with respect to the maize (Zea mays L.) model.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amor Y., Haigler C. H., Johnson S., Wainscott M., Delmer D. P. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9353–9357. doi: 10.1073/pnas.92.20.9353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CARDINI C. E., LELOIR L. F., CHIRIBOGA J. The biosynthesis of sucrose. J Biol Chem. 1955 May;214(1):149–155. [PubMed] [Google Scholar]
  3. Carlson S. J., Chourey P. S. Evidence for plasma membrane-associated forms of sucrose synthase in maize. Mol Gen Genet. 1996 Sep 13;252(3):303–310. doi: 10.1007/BF02173776. [DOI] [PubMed] [Google Scholar]
  4. Echt C. S., Chourey P. S. A Comparison of Two Sucrose Synthetase Isozymes from Normal and shrunken-1 Maize. Plant Physiol. 1985 Oct;79(2):530–536. doi: 10.1104/pp.79.2.530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Felker F. C., Peterson D. M., Nelson O. E. [C]Sucrose Uptake and Labeling of Starch in Developing Grains of Normal and segl Barley. Plant Physiol. 1984 Jan;74(1):43–46. doi: 10.1104/pp.74.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fu H., Park W. D. Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato. Plant Cell. 1995 Sep;7(9):1369–1385. doi: 10.1105/tpc.7.9.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldenberg D. P., Creighton T. E. Gel electrophoresis in studies of protein conformation and folding. Anal Biochem. 1984 Apr;138(1):1–18. doi: 10.1016/0003-2697(84)90761-9. [DOI] [PubMed] [Google Scholar]
  8. Koch K. E. CARBOHYDRATE-MODULATED GENE EXPRESSION IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):509–540. doi: 10.1146/annurev.arplant.47.1.509. [DOI] [PubMed] [Google Scholar]
  9. Koch K. E., Nolte K. D., Duke E. R., McCarty D. R., Avigne W. T. Sugar Levels Modulate Differential Expression of Maize Sucrose Synthase Genes. Plant Cell. 1992 Jan;4(1):59–69. doi: 10.1105/tpc.4.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Martin T., Frommer W. B., Salanoubat M., Willmitzer L. Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J. 1993 Aug;4(2):367–377. doi: 10.1046/j.1365-313x.1993.04020367.x. [DOI] [PubMed] [Google Scholar]
  12. Martinez de Ilarduya O., Vicente-Carbajosa J., Sanchez de la Hoz P., Carbonero P. Sucrose synthase genes in barley. cDNA cloning of the Ss2 type and tissue-specific expression of Ss1 and Ss2. FEBS Lett. 1993 Apr 5;320(2):177–181. doi: 10.1016/0014-5793(93)80087-b. [DOI] [PubMed] [Google Scholar]
  13. McCarty D. R., Shaw J. R., Hannah L. C. The cloning, genetic mapping, and expression of the constitutive sucrose synthase locus of maize. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9099–9103. doi: 10.1073/pnas.83.23.9099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morell M., Copeland L. Sucrose synthase of soybean nodules. Plant Physiol. 1985 May;78(1):149–154. doi: 10.1104/pp.78.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nolte K. D., Koch K. E. Companion-Cell Specific Localization of Sucrose Synthase in Zones of Phloem Loading and Unloading. Plant Physiol. 1993 Mar;101(3):899–905. doi: 10.1104/pp.101.3.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Okita T. W. Is there an alternative pathway for starch synthesis? Plant Physiol. 1992 Oct;100(2):560–564. doi: 10.1104/pp.100.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shaw J. R., Ferl R. J., Baier J., St Clair D., Carson C., McCarty D. R., Hannah L. C. Structural features of the maize sus1 gene and protein. Plant Physiol. 1994 Dec;106(4):1659–1665. doi: 10.1104/pp.106.4.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sánchez de la Hoz P., Vicente-Carbajosa J., Mena M., Carbonero P. Homologous sucrose synthase genes in barley (Hordeum vulgare) are located in chromosomes 7H (syn. 1) and 2H. Evidence for a gene translocation? FEBS Lett. 1992 Sep 21;310(1):46–50. doi: 10.1016/0014-5793(92)81143-a. [DOI] [PubMed] [Google Scholar]
  19. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wang N., Fisher D. B. The Use of Fluorescent Tracers to Characterize the Post-Phloem Transport Pathway in Maternal Tissues of Developing Wheat Grains. Plant Physiol. 1994 Jan;104(1):17–27. doi: 10.1104/pp.104.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wolosiuk R. A., Pontis H. G. Studies on sucrose synthetase. Kinetic mechanism. Arch Biochem Biophys. 1974 Nov;165(1):140–145. doi: 10.1016/0003-9861(74)90151-9. [DOI] [PubMed] [Google Scholar]
  22. Xu D. P., Sung S. J., Loboda T., Kormanik P. P., Black C. C. Characterization of Sucrolysis via the Uridine Diphosphate and Pyrophosphate-Dependent Sucrose Synthase Pathway. Plant Physiol. 1989 Jun;90(2):635–642. doi: 10.1104/pp.90.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yang N. S., Russell D. Maize sucrose synthase-1 promoter directs phloem cell-specific expression of Gus gene in transgenic tobacco plants. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4144–4148. doi: 10.1073/pnas.87.11.4144. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES