Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 May;114(1):69–78. doi: 10.1104/pp.114.1.69

Independent genetic control of maize starch-branching enzymes IIa and IIb. Isolation and characterization of a Sbe2a cDNA.

M Gao 1, D K Fisher 1, K N Kim 1, J C Shannon 1, M J Guiltinan 1
PMCID: PMC158280  PMID: 9159942

Abstract

In maize (Zea mays L.) three isoforms of starch-branching enzyme (SBEI, SBEIIa, and SBEIIb) are involved in the synthesis of amylopectin, the branched component of starch. To isolate a cDNA encoding SBEIIa, degenerate oligonucleotides based on domains highly conserved in Sbe2 family members were used to amplify Sbe2-family cDNA from tissues lacking SBEIIb activity. The predicted amino acid sequence of Sbe2a cDNA matches the N-terminal sequence of SBEIIa protein purified from maize endosperm. The size of the mature protein deduced from the cDNA also matches that of SBEIIa. Features of the predicted protein are most similar to members of the SBEII family; however, it differs from maize SBEIIb in having a 49-amino acid N-terminal extension and a region of substantial sequence divergence. Sbe2a mRNA levels are 10-fold higher in embryonic than in endosperm tissue, and are much lower than Sbe2b in both tissues. Unlike Sbe2b, Sbe2a-hybridizing mRNA accumulates in leaf and other vegetative tissues, consistent with the known distribution of SBEIIa and SBEIIb activities.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baba T., Kimura K., Mizuno K., Etoh H., Ishida Y., Shida O., Arai Y. Sequence conservation of the catalytic regions of amylolytic enzymes in maize branching enzyme-I. Biochem Biophys Res Commun. 1991 Nov 27;181(1):87–94. doi: 10.1016/s0006-291x(05)81385-3. [DOI] [PubMed] [Google Scholar]
  2. Burton R. A., Bewley J. D., Smith A. M., Bhattacharyya M. K., Tatge H., Ring S., Bull V., Hamilton W. D., Martin C. Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Plant J. 1995 Jan;7(1):3–15. doi: 10.1046/j.1365-313x.1995.07010003.x. [DOI] [PubMed] [Google Scholar]
  3. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dang P. L., Boyer C. D. Comparison of soluble starch synthases and branching enzymes from leaves and kernels of normal and amylose-extender maize. Biochem Genet. 1989 Oct;27(9-10):521–532. [PubMed] [Google Scholar]
  5. Fisher D. K., Boyer C. D., Hannah L. C. Starch branching enzyme II from maize endosperm. Plant Physiol. 1993 Jul;102(3):1045–1046. doi: 10.1104/pp.102.3.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fisher D. K., Gao M., Kim K. N., Boyer C. D., Guiltinan M. J. Allelic Analysis of the Maize amylose-extender Locus Suggests That Independent Genes Encode Starch-Branching Enzymes IIa and IIb. Plant Physiol. 1996 Feb;110(2):611–619. doi: 10.1104/pp.110.2.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fisher D. K., Gao M., Kim K. N., Boyer C. D., Guiltinan M. J. Two closely related cDNAs encoding starch branching enzyme from Arabidopsis thaliana. Plant Mol Biol. 1996 Jan;30(1):97–108. doi: 10.1007/BF00017805. [DOI] [PubMed] [Google Scholar]
  8. Fisher D. K., Kim K. N., Gao M., Boyer C. D., Guiltinan M. J. A cDNA encoding starch branching enzyme I from maize endosperm. Plant Physiol. 1995 Jul;108(3):1313–1314. doi: 10.1104/pp.108.3.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fisher M. B., Boyer C. D. Immunological characterization of maize starch branching enzymes. Plant Physiol. 1983 Jul;72(3):813–816. doi: 10.1104/pp.72.3.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gao M., Fisher D. K., Kim K. N., Shannon J. C., Guiltinan M. J. Evolutionary conservation and expression patterns of maize starch branching enzyme I and IIb genes suggests isoform specialization. Plant Mol Biol. 1996 Mar;30(6):1223–1232. doi: 10.1007/BF00019554. [DOI] [PubMed] [Google Scholar]
  11. Gavel Y., von Heijne G. A conserved cleavage-site motif in chloroplast transit peptides. FEBS Lett. 1990 Feb 26;261(2):455–458. doi: 10.1016/0014-5793(90)80614-o. [DOI] [PubMed] [Google Scholar]
  12. Giroux M. J., Boyer C., Feix G., Hannah L. C. Coordinated Transcriptional Regulation of Storage Product Genes in the Maize Endosperm. Plant Physiol. 1994 Oct;106(2):713–722. doi: 10.1104/pp.106.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hedman K. D., Boyer C. D. Allelic studies of the amylose-extender locus of Zea mays L.: levels of the starch branching enzymes. Biochem Genet. 1983 Dec;21(11-12):1217–1222. doi: 10.1007/BF00488473. [DOI] [PubMed] [Google Scholar]
  14. Mizuno K., Kimura K., Arai Y., Kawasaki T., Shimada H., Baba T. Starch branching enzymes from immature rice seeds. J Biochem. 1992 Nov;112(5):643–651. doi: 10.1093/oxfordjournals.jbchem.a123953. [DOI] [PubMed] [Google Scholar]
  15. Simon M. M., Palmetshofer A., Schwarz T. From RNA to sequenced clones within three days: a complete protocol. Biotechniques. 1994 Apr;16(4):633-6, 638. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES