Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 May;114(1):89–97. doi: 10.1104/pp.114.1.89

8[prime]-Methylene Abscisic Acid (An Effective and Persistent Analog of Abscisic Acid).

S R Abrams 1, P A Rose 1, A J Cutler 1, J J Balsevich 1, B Lei 1, M K Walker-Simmons 1
PMCID: PMC158282  PMID: 12223691

Abstract

We report here the synthesis and biological activity of a new persistent abscisic acid (ABA) analog, 8[prime]-methylene ABA. This ABA analog has one additional carbon atom attached through a double bond to the 8[prime]-carbon of the ABA molecule. (+)-8[prime]-Methylene ABA is more active than the natural hormone (+)-ABA in inhibiting germination of cress seed and excised wheat embryos, in reducing growth of suspension-cultured corn cells, and in reducing transpiration in wheat seedlings. The (+)-8[prime]-methylene analog is slightly weaker than (+)-ABA in increasing expression of ABA-inducible genes in transgenic tobacco, but is equally active in stimulating a transient elevation of the pH of the medium of corn cell cultures. In corn cells, both (+)-ABA and (+)-8[prime]-methylene ABA are oxidized at the 8[prime] position. ABA is oxidized to phaseic acid and (+)-8[prime]-methylene ABA is converted more slowly to two isomeric epoxides. The alteration in the ABA structure causes the analog to be metabolized more slowly than ABA, resulting in longer-lasting and more effective biological activity relative to ABA.

Full Text

The Full Text of this article is available as a PDF (917.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAKULIN P. P. [Eye injuries in the Stalin Leningrad Metallurgic Plant from 1954 to 1958 and measures for their prevention]. Trans Am Neurol Assoc. 1961;71:97–104. [PubMed] [Google Scholar]
  2. Balsevich J. J., Cutler A. J., Lamb N., Friesen L. J., Kurz E. U., Perras M. R., Abrams S. R. Response of Cultured Maize Cells to (+)-Abscisic Acid, (-)-Abscisic Acid, and Their Metabolites. Plant Physiol. 1994 Sep;106(1):135–142. doi: 10.1104/pp.106.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bray E. A. Molecular Responses to Water Deficit. Plant Physiol. 1993 Dec;103(4):1035–1040. doi: 10.1104/pp.103.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gillard D. F., Walton D. C. Abscisic Acid Metabolism by a Cell-free Preparation from Echinocystis lobata Liquid Endoserum. Plant Physiol. 1976 Dec;58(6):790–795. doi: 10.1104/pp.58.6.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Giraudat J., Parcy F., Bertauche N., Gosti F., Leung J., Morris P. C., Bouvier-Durand M., Vartanian N. Current advances in abscisic acid action and signalling. Plant Mol Biol. 1994 Dec;26(5):1557–1577. doi: 10.1007/BF00016490. [DOI] [PubMed] [Google Scholar]
  6. He K., Falick A. M., Chen B., Nilsson F., Correia M. A. Identification of the heme adduct and an active site peptide modified during mechanism-based inactivation of rat liver cytochrome P450 2B1 by secobarbital. Chem Res Toxicol. 1996 Apr-May;9(3):614–622. doi: 10.1021/tx950177k. [DOI] [PubMed] [Google Scholar]
  7. Hill R. D., Liu J. H., Durnin D., Lamb N., Shaw A., Abrams S. R. Abscisic Acid Structure-Activity Relationships in Barley Aleurone Layers and Protoplasts (Biological Activity of Optically Active, Oxygenated Abscisic Acid Analogs). Plant Physiol. 1995 Jun;108(2):573–579. doi: 10.1104/pp.108.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Robertson A. J., Reaney MJT., Wilen R. W., Lamb N., Abrams S. R., Gusta L. V. Effects of Abscisic Acid Metabolites and Analogs on Freezing Tolerance and Gene Expression in Bromegrass (Bromus inermis Leyss) Cell Cultures. Plant Physiol. 1994 Jul;105(3):823–830. doi: 10.1104/pp.105.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Walker-Simmons M. K., Anderberg R. J., Rose P. A., Abrams S. R. Optically pure abscisic Acid analogs-tools for relating germination inhibition and gene expression in wheat embryos. Plant Physiol. 1992 Jun;99(2):501–507. doi: 10.1104/pp.99.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Walker-Simmons M. K., Rose P. A., Shaw A. C., Abrams S. R. The 7[prime]-Methyl Group of Abscisic Acid Is Critical for Biological Activity in Wheat Embryo Germination. Plant Physiol. 1994 Dec;106(4):1279–1284. doi: 10.1104/pp.106.4.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Walker-Simmons M. ABA Levels and Sensitivity in Developing Wheat Embryos of Sprouting Resistant and Susceptible Cultivars. Plant Physiol. 1987 May;84(1):61–66. doi: 10.1104/pp.84.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wang H., Cutler A. J. Promoters from kin1 and cor6.6, two Arabidopsis thaliana low-temperature- and ABA-inducible genes, direct strong beta-glucuronidase expression in guard cells, pollen and young developing seeds. Plant Mol Biol. 1995 Jul;28(4):619–634. doi: 10.1007/BF00021188. [DOI] [PubMed] [Google Scholar]
  13. Wang H., Datla R., Georges F., Loewen M., Cutler A. J. Promoters from kin1 and cor6.6, two homologous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA, osmoticum and dehydration. Plant Mol Biol. 1995 Jul;28(4):605–617. doi: 10.1007/BF00021187. [DOI] [PubMed] [Google Scholar]
  14. Zou J., Abrams G. D., Barton D. L., Taylor D. C., Pomeroy M. K., Abrams S. R. Induction of Lipid and Oleosin Biosynthesis by (+)-Abscisic Acid and Its Metabolites in Microspore-Derived Embryos of Brassica napus L.cv Reston (Biological Responses in the Presence of 8[prime]-Hydroxyabscisic Acid). Plant Physiol. 1995 Jun;108(2):563–571. doi: 10.1104/pp.108.2.563. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES