Abstract
At various times after pulse-labeling broad bean (Vicia faba L.) leaflets with 14CO2, whole-leaf pieces and rinsed epidermal peels were harvested and subsequently processed for histochemical analysis. Cells dissected from whole leaf retained apoplastic contents, whereas those from rinsed peels contained only symplastic contents. Sucrose (Suc)-specific radioactivity peaked (111 GBq mol-1) in palisade cells at 20 min. In contrast, the 14C content and Sucspecific radioactivity were very low in guard cells for 20 min, implying little CO2 incorporation; both then peaked at 40 min. The guard-cell apoplast had a high maximum Suc-specific radioactivity (204 GBq mol-1) and a high Suc influx rate (0.05 pmol stoma-1 min-1). These and other comparisons implied the presence of (a) multiple Suc pools in mesophyll cells, (b) a localized mesophyll-apoplast region that exchanges with phloem and stomata, and (c) mesophyll-derived Suc in guard-cell walls sufficient to diminish stomatal opening by approximately 3 [mu]m. Factors expected to enhance Suc accumulation in guard-cell walls are (a) high transpiration rate, which closes stomata, and (b) high apoplastic Suc concentration, which is elevated when mesophyll Suc efflux exceeds translocation. Therefore, multiple physiological factors are integrated in the attenuation of stomatal aperture size by this previously unrecognized mechanism.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bouche-Pillon S., Fleurat-Lessard P., Fromont J. C., Serrano R., Bonnemain J. L. Immunolocalization of the Plasma Membrane H+ -ATPase in Minor Veins of Vicia faba in Relation to Phloem Loading. Plant Physiol. 1994 Jun;105(2):691–697. doi: 10.1104/pp.105.2.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gotow K., Taylor S., Zeiger E. Photosynthetic Carbon Fixation in Guard Cell Protoplasts of Vicia faba L. : Evidence from Radiolabel Experiments. Plant Physiol. 1988 Mar;86(3):700–705. doi: 10.1104/pp.86.3.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hite DRC., Outlaw W. H., Jr, Tarczynski M. C. Elevated Levels of Both Sucrose-Phosphate Synthase and Sucrose Synthase in Vicia Guard Cells Indicate Cell-Specific Carbohydrate Interconversions. Plant Physiol. 1993 Apr;101(4):1217–1221. doi: 10.1104/pp.101.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu P., Zhang S. Q., Outlaw W. H., Jr, Riddle K. A. Sucrose: a solute that accumulates in the guard-cell apoplast and guard-cell symplast of open stomata. FEBS Lett. 1995 Apr 3;362(2):180–184. doi: 10.1016/0014-5793(95)00239-6. [DOI] [PubMed] [Google Scholar]
- Michel B. E. Solute potentials of sucrose solutions. Plant Physiol. 1972 Jul;50(1):196–198. doi: 10.1104/pp.50.1.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Outlaw W. H., Fisher D. B., Christy A. L. Compartmentation in Vicia faba Leaves: II. Kinetics of C-Sucrose Redistribution among Individual Tissues following Pulse Labeling. Plant Physiol. 1975 Apr;55(4):704–711. doi: 10.1104/pp.55.4.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Outlaw W. H., Fisher D. B. Compartmentation in Vicia faba Leaves: I. Kinetics of C in the Tissues following Pulse Labeling. Plant Physiol. 1975 Apr;55(4):699–703. doi: 10.1104/pp.55.4.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Outlaw W. H., Kennedy J. Enzymic and substrate basis for the anaplerotic step in guard cells. Plant Physiol. 1978 Oct;62(4):648–652. doi: 10.1104/pp.62.4.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Outlaw W. H., Schmuck C. L., Tolbert N. E. Photosynthetic Carbon Metabolism in the Palisade Parenchyma and Spongy Parenchyma of Vicia faba L. Plant Physiol. 1976 Aug;58(2):186–189. doi: 10.1104/pp.58.2.186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Outlaw W. H., Springer S. A., Tarczynski M. C. Histochemical technique : a general method for quantitative enzyme assays of single cell ;extracts' with a time resolution of seconds and a reading precision of femtomoles. Plant Physiol. 1985 Mar;77(3):659–666. doi: 10.1104/pp.77.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poffenroth M., Green D. B., Tallman G. Sugar Concentrations in Guard Cells of Vicia faba Illuminated with Red or Blue Light : Analysis by High Performance Liquid Chromatography. Plant Physiol. 1992 Apr;98(4):1460–1471. doi: 10.1104/pp.98.4.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reckmann U., Scheibe R., Raschke K. Rubisco activity in guard cells compared with the solute requirement for stomatal opening. Plant Physiol. 1990 Jan;92(1):246–253. doi: 10.1104/pp.92.1.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroeder J. I., Ward J. M., Gassmann W. Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct. 1994;23:441–471. doi: 10.1146/annurev.bb.23.060194.002301. [DOI] [PubMed] [Google Scholar]
- Talbott L. D., Zeiger E. Sugar and Organic Acid Accumulation in Guard Cells of Vicia faba in Response to Red and Blue Light. Plant Physiol. 1993 Aug;102(4):1163–1169. doi: 10.1104/pp.102.4.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tallman G., Zeiger E. Light quality and osmoregulation in vicia guard cells : evidence for involvement of three metabolic pathways. Plant Physiol. 1988 Nov;88(3):887–895. doi: 10.1104/pp.88.3.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tarczynski M. C., Outlaw W. H., Jr Partial characterization of guard-cell phosphoenolpyruvate carboxylase: kinetic datum collection in real time from single-cell activities. Arch Biochem Biophys. 1990 Jul;280(1):153–158. doi: 10.1016/0003-9861(90)90530-c. [DOI] [PubMed] [Google Scholar]
- Waggoner P. E., Zelitch I. Transpiration and the Stomata of Leaves. Science. 1965 Dec 10;150(3702):1413–1420. doi: 10.1126/science.150.3702.1413. [DOI] [PubMed] [Google Scholar]