Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 May;114(1):193–201. doi: 10.1104/pp.114.1.193

Differential Accumulation of Salicylic Acid and Salicylic Acid-Sensitive Catalase in Different Rice Tissues.

Z Chen 1, S Iyer 1, A Caplan 1, D F Klessig 1, B Fan 1
PMCID: PMC158294  PMID: 12223699

Abstract

We previously proposed that salicylic acid (SA)-sensitive catalases serve as biological targets of SA in plant defense responses. To further examine the role of SA-sensitive catalases, we have analyzed the relationship between SA levels and SA sensitivity of catalases in different rice (Oryza sativa) tissues. We show here that, whereas rice shoots contain extremely high levels of free SA, as previously reported (I. Raskin, H. Skubatz, W. Tang, B.J.D. Meeuse [1990] Ann Bot 66: 369-373; P. Silverman, M. Seskar, D. Kanter, P. Schweizer, J.-P. Metraux, I. Raskin [1995] Plant Physiol 108: 633-639), rice roots and cell-suspension cultures have very low SA levels. Catalases from different rice tissues also exhibit differences in sensitivity to SA. Catalase from rice shoots is insensitive to SA, but roots and cell-suspension cultures contain SA-sensitive catalase. The difference in SA sensitivity of catalases from these different tissues correlates with the tissue-specific expression of two catalase genes, CatA and CatB, which encode highly distinctive catalase proteins. CatA, which encodes a catalase with relatively low sequence homology to the tobacco SA-sensitive catalases, is expressed at high levels exclusively in the shoots. On the other hand, in roots and cell-suspension cultures, with northern analysis we detected expression of only the CatB gene, which encodes a catalase with higher sequence homology to tobacco catalases. The role of catalases in mediating some of the SA-induced responses is discussed in light of these results and the recently defined mechanisms of catalase inhibition by SA.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bi Y. M., Kenton P., Mur L., Darby R., Draper J. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J. 1995 Aug;8(2):235–245. doi: 10.1046/j.1365-313x.1995.08020235.x. [DOI] [PubMed] [Google Scholar]
  2. Bowling S. A., Guo A., Cao H., Gordon A. S., Klessig D. F., Dong X. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell. 1994 Dec;6(12):1845–1857. doi: 10.1105/tpc.6.12.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Cao H., Bowling S. A., Gordon A. S., Dong X. Characterization of an Arabidopsis Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance. Plant Cell. 1994 Nov;6(11):1583–1592. doi: 10.1105/tpc.6.11.1583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen Y. N., Marnett L. J. Heme prosthetic group required for acetylation of prostaglandin H synthase by aspirin. FASEB J. 1989 Sep;3(11):2294–2297. doi: 10.1096/fasebj.3.11.2506093. [DOI] [PubMed] [Google Scholar]
  6. Chen Z., Klessig D. F. Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease-resistance response. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8179–8183. doi: 10.1073/pnas.88.18.8179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen Z., Malamy J., Henning J., Conrath U., Sánchez-Casas P., Silva H., Ricigliano J., Klessig D. K. Induction, modification, and transduction of the salicylic acid signal in plant defense responses. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4134–4137. doi: 10.1073/pnas.92.10.4134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen Z., Silva H., Klessig D. F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993 Dec 17;262(5141):1883–1886. doi: 10.1126/science.8266079. [DOI] [PubMed] [Google Scholar]
  9. Conrath U., Chen Z., Ricigliano J. R., Klessig D. F. Two inducers of plant defense responses, 2,6-dichloroisonicotinec acid and salicylic acid, inhibit catalase activity in tobacco. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7143–7147. doi: 10.1073/pnas.92.16.7143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Delaney T. P., Friedrich L., Ryals J. A. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6602–6606. doi: 10.1073/pnas.92.14.6602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Delaney T. P., Uknes S., Vernooij B., Friedrich L., Weymann K., Negrotto D., Gaffney T., Gut-Rella M., Kessmann H., Ward E., Ryals J. A central role of salicylic Acid in plant disease resistance. Science. 1994 Nov 18;266(5188):1247–1250. doi: 10.1126/science.266.5188.1247. [DOI] [PubMed] [Google Scholar]
  12. Dietrich R. A., Delaney T. P., Uknes S. J., Ward E. R., Ryals J. A., Dangl J. L. Arabidopsis mutants simulating disease resistance response. Cell. 1994 May 20;77(4):565–577. doi: 10.1016/0092-8674(94)90218-6. [DOI] [PubMed] [Google Scholar]
  13. Durner J., Klessig D. F. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11312–11316. doi: 10.1073/pnas.92.24.11312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Durner J., Klessig D. F. Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem. 1996 Nov 8;271(45):28492–28501. doi: 10.1074/jbc.271.45.28492. [DOI] [PubMed] [Google Scholar]
  15. Enyedi A. J., Yalpani N., Silverman P., Raskin I. Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2480–2484. doi: 10.1073/pnas.89.6.2480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gaffney T., Friedrich L., Vernooij B., Negrotto D., Nye G., Uknes S., Ward E., Kessmann H., Ryals J. Requirement of salicylic Acid for the induction of systemic acquired resistance. Science. 1993 Aug 6;261(5122):754–756. doi: 10.1126/science.261.5122.754. [DOI] [PubMed] [Google Scholar]
  17. Greenberg J. T., Guo A., Klessig D. F., Ausubel F. M. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell. 1994 May 20;77(4):551–563. doi: 10.1016/0092-8674(94)90217-8. [DOI] [PubMed] [Google Scholar]
  18. Havir E. A. The in Vivo and in Vitro Inhibition of Catalase from Leaves of Nicotiana sylvestris by 3-Amino-1,2,4-Triazole. Plant Physiol. 1992 Jun;99(2):533–537. doi: 10.1104/pp.99.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hepburn A. G., Clarke L. E., Pearson L., White J. The role of cytosine methylation in the control of nopaline synthase gene expression in a plant tumor. J Mol Appl Genet. 1983;2(3):315–329. [PubMed] [Google Scholar]
  20. Higo K., Higo H. Cloning and characterization of the rice CatA catalase gene, a homologue of the maize Cat3 gene. Plant Mol Biol. 1996 Feb;30(3):505–521. doi: 10.1007/BF00049328. [DOI] [PubMed] [Google Scholar]
  21. Jen-Jacobson L., Kurpiewski M., Lesser D., Grable J., Boyer H. W., Rosenberg J. M., Greene P. J. Coordinate ion pair formation between EcoRI endonuclease and DNA. J Biol Chem. 1983 Dec 10;258(23):14638–14646. [PubMed] [Google Scholar]
  22. Kapulnik Y., Yalpani N., Raskin I. Salicylic Acid induces cyanide-resistant respiration in tobacco cell-suspension cultures. Plant Physiol. 1992 Dec;100(4):1921–1926. doi: 10.1104/pp.100.4.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kettle A. J., Winterbourn C. C. Mechanism of inhibition of myeloperoxidase by anti-inflammatory drugs. Biochem Pharmacol. 1991 May 15;41(10):1485–1492. doi: 10.1016/0006-2952(91)90565-m. [DOI] [PubMed] [Google Scholar]
  24. LUCK H. Katalasehemmung durch organische Säuren. Biochem Z. 1957;328(6):411–419. [PubMed] [Google Scholar]
  25. Leslie C. A., Romani R. J. Inhibition of ethylene biosynthesis by salicylic Acid. Plant Physiol. 1988 Nov;88(3):833–837. doi: 10.1104/pp.88.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Malamy J., Carr J. P., Klessig D. F., Raskin I. Salicylic Acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science. 1990 Nov 16;250(4983):1002–1004. doi: 10.1126/science.250.4983.1002. [DOI] [PubMed] [Google Scholar]
  27. Masuta C., Van den Bulcke M., Bauw G., Van Montagu M., Caplan A. B. Differential effects of elicitors on the viability of rice suspension cells. Plant Physiol. 1991 Oct;97(2):619–629. doi: 10.1104/pp.97.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mori H., Higo K., Higo H., Minobe Y., Matsui H., Chiba S. Nucleotide and derived amino acid sequence of a catalase cDNA isolated from rice immature seeds. Plant Mol Biol. 1992 Mar;18(5):973–976. doi: 10.1007/BF00019211. [DOI] [PubMed] [Google Scholar]
  29. Morita S., Tasaka M., Fujisawa H., Ushimaru T., Tsuji H. A cDNA clone encoding a rice catalase isozyme. Plant Physiol. 1994 Jul;105(3):1015–1016. doi: 10.1104/pp.105.3.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Métraux J. P., Signer H., Ryals J., Ward E., Wyss-Benz M., Gaudin J., Raschdorf K., Schmid E., Blum W., Inverardi B. Increase in salicylic Acid at the onset of systemic acquired resistance in cucumber. Science. 1990 Nov 16;250(4983):1004–1006. doi: 10.1126/science.250.4983.1004. [DOI] [PubMed] [Google Scholar]
  31. Ni W., Turley R. B., Trelease R. N. Characterization of a cDNA encoding cottonseed catalase. Biochim Biophys Acta. 1990 Jun 21;1049(2):219–222. doi: 10.1016/0167-4781(90)90044-3. [DOI] [PubMed] [Google Scholar]
  32. Potter S., Uknes S., Lawton K., Winter A. M., Chandler D., DiMaio J., Novitzky R., Ward E., Ryals J. Regulation of a hevein-like gene in Arabidopsis. Mol Plant Microbe Interact. 1993 Nov-Dec;6(6):680–685. doi: 10.1094/mpmi-6-680. [DOI] [PubMed] [Google Scholar]
  33. Rasmussen J. B., Hammerschmidt R., Zook M. N. Systemic Induction of Salicylic Acid Accumulation in Cucumber after Inoculation with Pseudomonas syringae pv syringae. Plant Physiol. 1991 Dec;97(4):1342–1347. doi: 10.1104/pp.97.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rüffer M., Steipe B., Zenk M. H. Evidence against specific binding of salicylic acid to plant catalase. FEBS Lett. 1995 Dec 18;377(2):175–180. doi: 10.1016/0014-5793(95)01334-2. [DOI] [PubMed] [Google Scholar]
  35. Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A., Allard R. W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014–8018. doi: 10.1073/pnas.81.24.8014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sanchez-Casas P., Klessig D. F. A Salicylic Acid-Binding Activity and a Salicylic Acid-Inhibitable Catalase Activity Are Present in a Variety of Plant Species. Plant Physiol. 1994 Dec;106(4):1675–1679. doi: 10.1104/pp.106.4.1675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Silverman P., Seskar M., Kanter D., Schweizer P., Metraux J. P., Raskin I. Salicylic Acid in Rice (Biosynthesis, Conjugation, and Possible Role). Plant Physiol. 1995 Jun;108(2):633–639. doi: 10.1104/pp.108.2.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Van Breusegem F., Dekeyser R., Gielen J., Van Montagu M., Caplan A. Characterization of a S-adenosylmethionine synthetase gene in rice. Plant Physiol. 1994 Aug;105(4):1463–1464. doi: 10.1104/pp.105.4.1463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vanlerberghe G. C., McLntosh L. Signals Regulating the Expression of the Nuclear Gene Encoding Alternative Oxidase of Plant Mitochondria. Plant Physiol. 1996 Jun;111(2):589–595. doi: 10.1104/pp.111.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vernooij B., Friedrich L., Morse A., Reist R., Kolditz-Jawhar R., Ward E., Uknes S., Kessmann H., Ryals J. Salicylic Acid Is Not the Translocated Signal Responsible for Inducing Systemic Acquired Resistance but Is Required in Signal Transduction. Plant Cell. 1994 Jul;6(7):959–965. doi: 10.1105/tpc.6.7.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Weymann K., Hunt M., Uknes S., Neuenschwander U., Lawton K., Steiner H. Y., Ryals J. Suppression and Restoration of Lesion Formation in Arabidopsis lsd Mutants. Plant Cell. 1995 Dec;7(12):2013–2022. doi: 10.1105/tpc.7.12.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wiedau-Pazos M., Goto J. J., Rabizadeh S., Gralla E. B., Roe J. A., Lee M. K., Valentine J. S., Bredesen D. E. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science. 1996 Jan 26;271(5248):515–518. doi: 10.1126/science.271.5248.515. [DOI] [PubMed] [Google Scholar]
  43. Willekens H., Langebartels C., Tiré C., Van Montagu M., Inzé D., Van Camp W. Differential expression of catalase genes in Nicotiana plumbaginifolia (L.). Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10450–10454. doi: 10.1073/pnas.91.22.10450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Willekens H., Villarroel R., Van Montagu M., Inzé D., Van Camp W. Molecular identification of catalases from Nicotiana plumbaginifolia (L.). FEBS Lett. 1994 Sep 19;352(1):79–83. doi: 10.1016/0014-5793(94)00923-6. [DOI] [PubMed] [Google Scholar]
  45. Zamocky M., Herzog C., Nykyri L. M., Koller F. Site-directed mutagenesis of the lower parts of the major substrate channel of yeast catalase A leads to highly increased peroxidatic activity. FEBS Lett. 1995 Jul 3;367(3):241–245. doi: 10.1016/0014-5793(95)00568-t. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES