Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 May;114(1):203–212. doi: 10.1104/pp.114.1.203

Grain Development Mutants of Barley ([alpha]-Amylase Production during Grain Maturation and Its Relation to Endogenous Gibberellic Acid Content).

L S Green 1, E M Faergestad 1, A Poole 1, P M Chandler 1
PMCID: PMC158295  PMID: 12223700

Abstract

Barley (Hordeum vulgare L. Himalaya) mutants with altered grain morphology were isolated to investigate whether defects in grain development, possibly involving gibberellins (GAs) and abscisic acid, would lead to altered patterns of [alpha]-amylase gene expression. Following treatment with sodium azide, 75 mutants, typically showing grain shriveling, were identified. At grain maturity 15 of the 75 mutants had higher [alpha]-amylase activities in shriveled grains compared with either phenotypically normal grains that developed on the same heterozygous plant or with grains of cv Himalaya. Studies of four of these mutants demonstrated increased levels of both high- and low-isoelectric point [alpha]-amylase isozymes midway through grain development. This category of mutant has been designated pga, for premature grain [alpha]-amylase. One such mutant (M326) showed an endosperm-determined inheritance pattern. When crossed into a (GA-deficient) dwarfing background there was a 10- to 20-fold reduction in [alpha]-amylase activity, suggesting a requirement for GA biosynthesis. Endogenous GAs and abscisic acid were quantified by combined gas chromatography-specific ion monitoring in normal and mutant grains of heterozygous M326 plants during the period of [alpha]-amylase accumulation. Mutant grains had significantly higher (5.8-fold) levels of the bioactive GA1 compared with normal grains but much lower (approximately 10-fold) levels of the 2[beta]-hydroxylated ("inactive") GAs, typical of developing barley grains (e.g. GA8, GA34, GA48). We propose that a reduced extent of 2[beta]-hydroxylation in the mutant grains results in an increased level of GA1, which is responsible for premature [alpha]-amylase gene expression.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gale M. D., Ainsworth C. C. The relationship between alpha-amylase species found in developing and germinating wheat grain. Biochem Genet. 1984 Dec;22(11-12):1031–1036. doi: 10.1007/BF00499629. [DOI] [PubMed] [Google Scholar]
  2. Walker-Simmons M. ABA Levels and Sensitivity in Developing Wheat Embryos of Sprouting Resistant and Susceptible Cultivars. Plant Physiol. 1987 May;84(1):61–66. doi: 10.1104/pp.84.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Walker-Simmons M., Kudrna D. A., Warner R. L. Reduced Accumulation of ABA during Water Stress in a Molybdenum Cofactor Mutant of Barley. Plant Physiol. 1989 Jun;90(2):728–733. doi: 10.1104/pp.90.2.728. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES