Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 May;114(1):237–244. doi: 10.1104/pp.114.1.237

Intracellular carbonic anhydrase is essential to photosynthesis in Chlamydomonas reinhardtii at atmospheric levels of CO2. Demonstration via genomic complementation of the high-CO2-requiring mutant ca-1.

R P Funke 1, J L Kovar 1, D P Weeks 1
PMCID: PMC158299  PMID: 9159949

Abstract

Genomic complementation of the high-CO2-requiring mutant ca-1-12-1C of Chlamydomonas reinhardtii was achieved by transformation with DNA pools from an indexed cosmid library of wild-type genomic DNA. Transformation of mutant cells with cosmid DNA from two microtiter plates in the library produced colonies that grew phototrophically at atmospheric CO2 levels. Transformations with cosmid DNA from each of the rows and files of the two plates pinpointed one well in each plate with a cosmid bearing the targeted gene. Sequencing of cosmid subclones revealed a gene encoding a recently identified C. reinhardtii chloroplast carbonic anhydrase (CAH3). Transformations with chimeric constructs combining different portions of the wild-type and mutant genes indicated the presence of a mutation in the 5'-half of the gene. Comparison of mutant and wild-type gene sequences in this region revealed a G-to-A substitution in the mutant gene, which produced a nonsense codon. The data presented demonstrate that the carbonic anhydrase produced from the CAH3 gene is essential to the inorganic carbon-concentrating mechanism in C. reinhardtii and that genomic complementation can be a facile and efficient means for isolating genes associated with defects affecting photosynthesis and other physiological processes in this eukaryotic green alga.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fawcett T. W., Browse J. A., Volokita M., Bartlett S. G. Spinach carbonic anhydrase primary structure deduced from the sequence of a cDNA clone. J Biol Chem. 1990 Apr 5;265(10):5414–5417. [PubMed] [Google Scholar]
  2. Fett J. P., Coleman J. R. Regulation of Periplasmic Carbonic Anhydrase Expression in Chlamydomonas reinhardtii by Acetate and pH. Plant Physiol. 1994 Sep;106(1):103–108. doi: 10.1104/pp.106.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fukuzawa H., Suzuki E., Komukai Y., Miyachi S. A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4437–4441. doi: 10.1073/pnas.89.10.4437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gorman D. S., Levine R. P. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1665–1669. doi: 10.1073/pnas.54.6.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Guilloton M. B., Korte J. J., Lamblin A. F., Fuchs J. A., Anderson P. M. Carbonic anhydrase in Escherichia coli. A product of the cyn operon. J Biol Chem. 1992 Feb 25;267(6):3731–3734. [PubMed] [Google Scholar]
  6. Husic H. D., Kitayama M., Togasaki R. K., Moroney J. V., Morris K. L., Tolbert N. E. Identification of Intracellular Carbonic Anhydrase in Chlamydomonas reinhardtii which Is Distinct from the Periplasmic Form of the Enzyme. Plant Physiol. 1989 Mar;89(3):904–909. doi: 10.1104/pp.89.3.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Husic H. D., Marcus C. A. Identification of Intracellular Carbonic Anhydrase in Chlamydomonas reinhardtii with a Carbonic Anhydrase-Directed Photoaffinity Label. Plant Physiol. 1994 May;105(1):133–139. doi: 10.1104/pp.105.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Karlsson J., Hiltonen T., Husic H. D., Ramazanov Z., Samuelsson G. Intracellular carbonic anhydrase of Chlamydomonas reinhardtii. Plant Physiol. 1995 Oct;109(2):533–539. doi: 10.1104/pp.109.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kindle K. L. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1228–1232. doi: 10.1073/pnas.87.3.1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Moroney J. V., Husic H. D., Tolbert N. E., Kitayama M., Manuel L. J., Togasaki R. K. Isolation and Characterization of a Mutant of Chlamydomonas reinhardtii Deficient in the CO(2) Concentrating Mechanism. Plant Physiol. 1989 Mar;89(3):897–903. doi: 10.1104/pp.89.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rawat M., Moroney J. V. Partial characterization of a new isoenzyme of carbonic anhydrase isolated from Chlamydomonas reinhardtii. J Biol Chem. 1991 May 25;266(15):9719–9723. [PubMed] [Google Scholar]
  12. Roeske C. A., Ogren W. L. Nucleotide sequence of pea cDNA encoding chloroplast carbonic anhydrase. Nucleic Acids Res. 1990 Jun 11;18(11):3413–3413. doi: 10.1093/nar/18.11.3413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sung Y. C., Fuchs J. A. Characterization of the cyn operon in Escherichia coli K12. J Biol Chem. 1988 Oct 15;263(29):14769–14775. [PubMed] [Google Scholar]
  14. Suss K. H., Prokhorenko I., Adler K. In Situ Association of Calvin Cycle Enzymes, Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Activase, Ferredoxin-NADP+ Reductase, and Nitrite Reductase with Thylakoid and Pyrenoid Membranes of Chlamydomonas reinhardtii Chloroplasts as Revealed by Immunoelectron Microscopy. Plant Physiol. 1995 Apr;107(4):1387–1397. doi: 10.1104/pp.107.4.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sültemeyer D. F., Fock H. P., Canvin D. T. Mass Spectrometric Measurement of Intracellular Carbonic Anhydrase Activity in High and Low C(i) Cells of Chlamydomonas: Studies Using O Exchange with C/O Labeled Bicarbonate. Plant Physiol. 1990 Nov;94(3):1250–1257. doi: 10.1104/pp.94.3.1250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tachiki A., Fukuzawa H., Miyachi S. Characterization of carbonic anhydrase isozyme CA2, which is the CAH2 gene product, in Chlamydomonas reinhardtii. Biosci Biotechnol Biochem. 1992 May;56(5):794–798. doi: 10.1271/bbb.56.794. [DOI] [PubMed] [Google Scholar]
  17. Vollmer S. J., Yanofsky C. Efficient cloning of genes of Neurospora crassa. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4869–4873. doi: 10.1073/pnas.83.13.4869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Williams T. G., Turpin D. H. The Role of External Carbonic Anhydrase in Inorganic Carbon Acquisition by Chlamydomonas reinhardii at Alkaline pH. Plant Physiol. 1987 Jan;83(1):92–96. doi: 10.1104/pp.83.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zhang H., Herman P. L., Weeks D. P. Gene isolation through genomic complementation using an indexed library of Chlamydomonas reinhardtii DNA. Plant Mol Biol. 1994 Feb;24(4):663–672. doi: 10.1007/BF00023562. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES