Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 May;114(1):245–254. doi: 10.1104/pp.114.1.245

Xyloglucan galactosyl- and fucosyltransferase activities from pea epicotyl microsomes.

A Faïk 1, C Chileshe 1, J Sterling 1, G Maclachlan 1
PMCID: PMC158300  PMID: 9159950

Abstract

Microsomal membranes from growing tissue of pea (Pisum sativum L.) epicotyls were incubated with the substrate UDP-[14C]galactose (Gal) with or without tamarind seed xyloglucan (XG) as a potential galactosyl acceptor. Added tamarind seed XG enhanced incorporation of [14C]Gal into high-molecular-weight products (eluted from columns of Sepharose CL-6B in the void volume) that were trichloroacetic acid-soluble but insoluble in 67% ethanol. These products were hydrolyzed by cellulase to fragments comparable in size to XG subunit oligosaccharides. XG-dependent galactosyltransferase activity could be solubilized, along with XG fucosyltransferase, by the detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate. When this enzyme was incubated with tamarind (Tamarindus indica L.) seed XG or nasturtium (Tropaeolum majus L.) seed XG that had been partially degalactosylated with an XG-specific beta-galactosidase, the rates of Gal transfer increased and fucose transfer decreased compared with controls with native XG. The reaction products were hydrolyzed by cellulase to 14C fragments that were analyzed by gel-filtration and high-performance liquid chromatography fractionation with pulsed amperometric detection. The major components were XG subunits, namely one of the two possible monogalactosyl octasaccharides (-XXLG-) and digalactosyl nonasaccharide (-XLLG-), whether the predominant octasaccharide in the acceptor was XXLG (as in tamarind seed XG) or XLXG (as in nasturtium seed XG). It is concluded that the first xylosylglucose from the reducing end of the subunits was the Gal acceptor locus preferred by the solubilized pea transferase. These observations are incorporated into a model for the biosynthesis of cell wall XGs.

Full Text

The Full Text of this article is available as a PDF (999.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Camirand A., Maclachlan G. Biosynthesis of the fucose-containing xyloglucan nonasaccharide by pea microsomal membranes. Plant Physiol. 1986 Oct;82(2):379–383. doi: 10.1104/pp.82.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Edwards M., Bowman Y. J., Dea I. C., Reid J. S. A beta-D-galactosidase from nasturtium (Tropaeolum majus L.) cotyledons. Purification, properties, and demonstration that xyloglucan is the natural substrate. J Biol Chem. 1988 Mar 25;263(9):4333–4337. [PubMed] [Google Scholar]
  3. Gordon R., Maclachlan G. Incorporation of UDP-[C]Glucose into Xyloglucan by Pea Membranes. Plant Physiol. 1989 Sep;91(1):373–378. doi: 10.1104/pp.91.1.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Guillén R., York W. S., Pauly M., An J., Impallomeni G., Albersheim P., Darvill A. G. Metabolism of xyloglucan generates xylose-deficient oligosaccharide subunits of this polysaccharide in etiolated peas. Carbohydr Res. 1995 Nov 22;277(2):291–311. doi: 10.1016/0008-6215(95)00220-n. [DOI] [PubMed] [Google Scholar]
  5. Hanna R., Brummell D. A., Camirand A., Hensel A., Russell E. F., Maclachlan G. A. Solubilization and properties of GDP-fucose: xyloglucan 1,2-alpha-L-fucosyltransferase from pea epicotyl membranes. Arch Biochem Biophys. 1991 Oct;290(1):7–13. doi: 10.1016/0003-9861(91)90584-6. [DOI] [PubMed] [Google Scholar]
  6. Hayashi T., Maclachlan G. Pea xyloglucan and cellulose : I. Macromolecular organization. Plant Physiol. 1984 Jul;75(3):596–604. doi: 10.1104/pp.75.3.596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hayashi T., Matsuda K. Biosynthesis of xyloglucan in suspension-cultured soybean cells. Occurrence and some properties of xyloglucan 4-beta-D-glucosyltransferase and 6-alpha-D-xylosyltransferase. J Biol Chem. 1981 Nov 10;256(21):11117–11122. [PubMed] [Google Scholar]
  8. Levy S., York W. S., Stuike-Prill R., Meyer B., Staehelin L. A. Simulations of the static and dynamic molecular conformations of xyloglucan. The role of the fucosylated sidechain in surface-specific sidechain folding. Plant J. 1991 Sep;1(2):195–215. [PubMed] [Google Scholar]
  9. McDougall G. J., Fry S. C. Purification and analysis of growth-regulating xyloglucan-derived oligosaccharides by high-pressure liquid chromatography. Carbohydr Res. 1991 Oct 14;219:123–132. doi: 10.1016/0008-6215(91)89047-j. [DOI] [PubMed] [Google Scholar]
  10. Ray P. M. Cooperative action of beta-glucan synthetase and UDP-xylose xylosyl transferase of Golgi membranes in the synthesis of xyloglucan-like polysaccharide. Biochim Biophys Acta. 1980 May 22;629(3):431–444. doi: 10.1016/0304-4165(80)90149-x. [DOI] [PubMed] [Google Scholar]
  11. Vincken J. P., de Keizer A., Beldman G., Voragen A. G. Fractionation of xyloglucan fragments and their interaction with cellulose. Plant Physiol. 1995 Aug;108(4):1579–1585. doi: 10.1104/pp.108.4.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. York W. S., Harvey L. K., Guillen R., Albersheim P., Darvill A. G. Structural analysis of tamarind seed xyloglucan oligosaccharides using beta-galactosidase digestion and spectroscopic methods. Carbohydr Res. 1993 Oct 4;248:285–301. doi: 10.1016/0008-6215(93)84135-s. [DOI] [PubMed] [Google Scholar]
  13. Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J. 1993 Aug 15;294(Pt 1):1–14. doi: 10.1042/bj2940001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Zhang G. F., Staehelin L. A. Functional compartmentation of the Golgi apparatus of plant cells : immunocytochemical analysis of high-pressure frozen- and freeze-substituted sycamore maple suspension culture cells. Plant Physiol. 1992 Jul;99(3):1070–1083. doi: 10.1104/pp.99.3.1070. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES