Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 May;114(1):255–263. doi: 10.1104/pp.114.1.255

Suppression of Ripening-Associated Gene Expression in Tomato Fruits Subjected to a High CO2 Concentration.

C Rothan 1, S Duret 1, C Chevalier 1, P Raymond 1
PMCID: PMC158301  PMID: 12223703

Abstract

High concentrations of CO2 block or delay the ripening of fruits. In this study we investigated the effects of high CO2 on ripening and on the expression of stress- and ripening-inducible genes in cherry tomato (Lycopersicon esculentum Mill.) fruit. Mature-green tomato fruits were submitted to a high CO2 concentration (20%) for 3 d and then transferred to air. These conditions effectively inhibited ripening-associated color changes and ethylene production, and reduced the protein content. No clear-cut effect was observed on the expression of two proteolysis-related genes, encoding polyubiquitin and ubiquitin-conjugating enzyme E2, respectively. Exposure of fruit to high CO2 also resulted in the strong induction of two genes encoding stress-related proteins: a ripening-regulated heat-shock protein and glutamate decarboxylase. Induction of these two genes indicated that high CO2 had a stress effect, most likely through cytosolic acidification. In addition, high CO2 blocked the accumulation of mRNAs for genes involved in the main ripening-related changes: ethylene synthesis (1-aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase), color (phytoene synthase), firmness (polygalacturonase), and sugar accumulation (acid invertase). The expression of ripening-specific genes was affected by CO2 regardless of whether their induction was ethylene- or development-dependent. It is proposed that the inhibition of tomato fruit ripening by high CO2 is due, in part, to the suppression of the expression of ripening-associated genes, which is probably related to the stress effect exerted by high CO2.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burg S. P., Burg E. A. Molecular requirements for the biological activity of ethylene. Plant Physiol. 1967 Jan;42(1):144–152. doi: 10.1104/pp.42.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carroll A. D., Fox G. G., Laurie S., Phillips R., Ratcliffe R. G., Stewart G. R. Ammonium Assimilation and the Role of [gamma]-Aminobutyric Acid in pH Homeostasis in Carrot Cell Suspensions. Plant Physiol. 1994 Oct;106(2):513–520. doi: 10.1104/pp.106.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Crawford L. A., Bown A. W., Breitkreuz K. E., Guinel F. C. The Synthesis of [gamma]-Aminobutyric Acid in Response to Treatments Reducing Cytosolic pH. Plant Physiol. 1994 Mar;104(3):865–871. doi: 10.1104/pp.104.3.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Elliott K. J., Butler W. O., Dickinson C. D., Konno Y., Vedvick T. S., Fitzmaurice L., Mirkov T. E. Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening. Plant Mol Biol. 1993 Feb;21(3):515–524. doi: 10.1007/BF00028808. [DOI] [PubMed] [Google Scholar]
  5. Genschik P., Parmentier Y., Durr A., Marbach J., Criqui M. C., Jamet E., Fleck J. Ubiquitin genes are differentially regulated in protoplast-derived cultures of Nicotiana sylvestris and in response to various stresses. Plant Mol Biol. 1992 Dec;20(5):897–910. doi: 10.1007/BF00027161. [DOI] [PubMed] [Google Scholar]
  6. Gray J., Picton S., Shabbeer J., Schuch W., Grierson D. Molecular biology of fruit ripening and its manipulation with antisense genes. Plant Mol Biol. 1992 May;19(1):69–87. doi: 10.1007/BF00015607. [DOI] [PubMed] [Google Scholar]
  7. Grierson D., Tucker G. A., Keen J., Ray J., Bird C. R., Schuch W. Sequencing and identification of a cDNA clone for tomato polygalacturonase. Nucleic Acids Res. 1986 Nov 11;14(21):8595–8603. doi: 10.1093/nar/14.21.8595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jinn T. L., Chen Y. M., Lin C. Y. Characterization and Physiological Function of Class I Low-Molecular-Mass, Heat-Shock Protein Complex in Soybean. Plant Physiol. 1995 Jun;108(2):693–701. doi: 10.1104/pp.108.2.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kerbel E. L., Kader A. A., Romani R. J. Effects of Elevated CO(2) Concentrations on Glycolysis in Intact ;Bartlett' Pear Fruit. Plant Physiol. 1988 Apr;86(4):1205–1209. doi: 10.1104/pp.86.4.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Klee H. J., Hayford M. B., Kretzmer K. A., Barry G. F., Kishore G. M. Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell. 1991 Nov;3(11):1187–1193. doi: 10.1105/tpc.3.11.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klee H. J. Ripening Physiology of Fruit from Transgenic Tomato (Lycopersicon esculentum) Plants with Reduced Ethylene Synthesis. Plant Physiol. 1993 Jul;102(3):911–916. doi: 10.1104/pp.102.3.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Köck M., Hamilton A., Grierson D. eth1, a gene involved in ethylene synthesis in tomato. Plant Mol Biol. 1991 Jul;17(1):141–142. doi: 10.1007/BF00036816. [DOI] [PubMed] [Google Scholar]
  13. Rottmann W. H., Peter G. F., Oeller P. W., Keller J. A., Shen N. F., Nagy B. P., Taylor L. P., Campbell A. D., Theologis A. 1-aminocyclopropane-1-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J Mol Biol. 1991 Dec 20;222(4):937–961. doi: 10.1016/0022-2836(91)90587-v. [DOI] [PubMed] [Google Scholar]
  14. Römer S., Hugueney P., Bouvier F., Camara B., Kuntz M. Expression of the genes encoding the early carotenoid biosynthetic enzymes in Capsicum annuum. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1414–1421. doi: 10.1006/bbrc.1993.2410. [DOI] [PubMed] [Google Scholar]
  15. Saltveit M. E. Effect of alcohols and their interaction with ethylene on the ripening of epidermal pericarp discs of tomato fruit. Plant Physiol. 1989 May;90(1):167–174. doi: 10.1104/pp.90.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Theologis A. One rotten apple spoils the whole bushel: the role of ethylene in fruit ripening. Cell. 1992 Jul 24;70(2):181–184. doi: 10.1016/0092-8674(92)90093-r. [DOI] [PubMed] [Google Scholar]
  17. Verwoerd T. C., Dekker B. M., Hoekema A. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 1989 Mar 25;17(6):2362–2362. doi: 10.1093/nar/17.6.2362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yen H. C., Lee S., Tanksley S. D., Lanahan M. B., Klee H. J., Giovannoni J. J. The tomato Never-ripe locus regulates ethylene-inducible gene expression and is linked to a homolog of the Arabidopsis ETR1 gene. Plant Physiol. 1995 Apr;107(4):1343–1353. doi: 10.1104/pp.107.4.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zarembinski T. I., Theologis A. Ethylene biosynthesis and action: a case of conservation. Plant Mol Biol. 1994 Dec;26(5):1579–1597. doi: 10.1007/BF00016491. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES