Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 May;114(1):275–284. doi: 10.1104/pp.114.1.275

Evidence for the Presence of the Ascorbate-Glutathione Cycle in Mitochondria and Peroxisomes of Pea Leaves.

A Jimenez 1, J A Hernandez 1, L A Del Rio 1, F Sevilla 1
PMCID: PMC158303  PMID: 12223704

Abstract

The presence of the enzymes of the ascorbate-glutathione cycle was investigated in mitochondria and peroxisomes purified from pea (Pisum sativum L.) leaves. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2), were present in mitochondria and peroxisomes, as well as in the antioxidants ascorbate and glutathione. The activity of the ascorbate-glutathione cycle enzymes was higher in mitochondria than in peroxisomes, except for APX, which was more active in peroxisomes than in mitochondria. Intact mitochondria and peroxisomes had no latent APX activity, and this remained in the membrane fraction after solubilization assays with 0.2 M KCl. Monodehydroascorbate reductase was highly latent in intact mitochondria and peroxisomes and was membrane-bound, suggesting that the electron acceptor and donor sites of this redox protein are not on the external side of the mitochondrial and peroxisomal membranes. Dehydroascorbate reductase was found mainly in the soluble peroxisomal and mitochondrial fractions. Glutathione reductase had a high latency in mitochondria and peroxisomes and was present in the soluble fractions of both organelles. In intact peroxisomes and mitochondria, the presence of reduced ascorbate and glutathione and the oxidized forms of ascorbate and glutathione were demonstrated by high-performance liquid chromatography analysis. The ascorbate-glutathione cycle of mitochondria and peroxisomes could represent an important antioxidant protection system against H2O2 generated in both plant organelles.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asensi M., Sastre J., Pallardo F. V., Estrela J. M., Viña J. Determination of oxidized glutathione in blood: high-performance liquid chromatography. Methods Enzymol. 1994;234:367–371. doi: 10.1016/0076-6879(94)34106-0. [DOI] [PubMed] [Google Scholar]
  2. Baeuerle P. A., Rupec R. A., Pahl H. L. Reactive oxygen intermediates as second messengers of a general pathogen response. Pathol Biol (Paris) 1996 Jan;44(1):29–35. [PubMed] [Google Scholar]
  3. Boveris A. Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol. 1984;105:429–435. doi: 10.1016/s0076-6879(84)05060-6. [DOI] [PubMed] [Google Scholar]
  4. Boveris A., Oshino N., Chance B. The cellular production of hydrogen peroxide. Biochem J. 1972 Jul;128(3):617–630. doi: 10.1042/bj1280617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bowditch M. L., Donaldson R. P. Ascorbate free-radical reduction by glyoxysomal membranes. Plant Physiol. 1990 Oct;94(2):531–537. doi: 10.1104/pp.94.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bunkelmann J. R., Trelease R. N. Ascorbate peroxidase. A prominent membrane protein in oilseed glyoxysomes. Plant Physiol. 1996 Feb;110(2):589–598. doi: 10.1104/pp.110.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dalton D. A., Baird L. M., Langeberg L., Taugher C. Y., Anyan W. R., Vance C. P., Sarath G. Subcellular Localization of Oxygen Defense Enzymes in Soybean (Glycine max [L.] Merr.) Root Nodules. Plant Physiol. 1993 Jun;102(2):481–489. doi: 10.1104/pp.102.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dalton D. A., Hanus F. J., Russell S. A., Evans H. J. Purification, properties, and distribution of ascorbate peroxidase in legume root nodules. Plant Physiol. 1987 Apr;83(4):789–794. doi: 10.1104/pp.83.4.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Leonardis S., De Lorenzo G., Borraccino G., Dipierro S. A Specific Ascorbate Free Radical Reductase Isozyme Participates in the Regeneration of Ascorbate for Scavenging Toxic Oxygen Species in Potato Tuber Mitochondria. Plant Physiol. 1995 Nov;109(3):847–851. doi: 10.1104/pp.109.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Doehlert D. C., Kuo T. M., Felker F. C. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiol. 1988 Apr;86(4):1013–1019. doi: 10.1104/pp.86.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Droillard M. J., Paulin A. Isozymes of Superoxide Dismutase in Mitochondria and Peroxisomes Isolated from Petals of Carnation (Dianthus caryophyllus) during Senescence. Plant Physiol. 1990 Nov;94(3):1187–1192. doi: 10.1104/pp.94.3.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fariss M. W., Reed D. J. High-performance liquid chromatography of thiols and disulfides: dinitrophenol derivatives. Methods Enzymol. 1987;143:101–109. doi: 10.1016/0076-6879(87)43018-8. [DOI] [PubMed] [Google Scholar]
  13. Fridovich I. Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol. 1986;58:61–97. doi: 10.1002/9780470123041.ch2. [DOI] [PubMed] [Google Scholar]
  14. Luster D. G., Bowditch M. I., Eldridge K. M., Donaldson R. P. Characterization of membrane-bound electron transport enzymes from castor bean glyoxysomes and endoplasmic reticulum. Arch Biochem Biophys. 1988 Aug 15;265(1):50–61. doi: 10.1016/0003-9861(88)90370-0. [DOI] [PubMed] [Google Scholar]
  15. Luster D. G., Donaldson R. P. Orientation of electron transport activities in the membrane of intact glyoxysomes isolated from castor bean endosperm. Plant Physiol. 1987 Nov;85(3):796–800. doi: 10.1104/pp.85.3.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. López-Huertas E., Sandalió L. M., Del Rio L. A. Superoxide generation in plant peroxisomal membranes: characterization of redox proteins involved. Biochem Soc Trans. 1996 May;24(2):195S–195S. doi: 10.1042/bst024195s. [DOI] [PubMed] [Google Scholar]
  17. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  18. Mittler R., Zilinskas B. A. Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal Biochem. 1993 Aug 1;212(2):540–546. doi: 10.1006/abio.1993.1366. [DOI] [PubMed] [Google Scholar]
  19. Mittler R., Zilinskas B. A. Purification and characterization of pea cytosolic ascorbate peroxidase. Plant Physiol. 1991 Nov;97(3):962–968. doi: 10.1104/pp.97.3.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Njus D., Kelley P. M. The secretory-vesicle ascorbate-regenerating system: a chain of concerted H+/e(-)-transfer reactions. Biochim Biophys Acta. 1993 Oct 4;1144(3):235–248. doi: 10.1016/0005-2728(93)90108-r. [DOI] [PubMed] [Google Scholar]
  21. Palma J. M., Gómez M., Yáez J., Del Río L. A. Increased levels of peroxisomal active oxygen-related enzymes in copper-tolerant pea plants. Plant Physiol. 1987 Oct;85(2):570–574. doi: 10.1104/pp.85.2.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Prasad T. K., Anderson M. D., Stewart C. R. Localization and Characterization of Peroxidases in the Mitochondria of Chilling-Acclimated Maize Seedlings. Plant Physiol. 1995 Aug;108(4):1597–1605. doi: 10.1104/pp.108.4.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rautenkranz AAF., Li L., Machler F., Martinoia E., Oertli J. J. Transport of Ascorbic and Dehydroascorbic Acids across Protoplast and Vacuole Membranes Isolated from Barley (Hordeum vulgare L. cv Gerbel) Leaves. Plant Physiol. 1994 Sep;106(1):187–193. doi: 10.1104/pp.106.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sandalio L. M., Del Río L. A. Intraorganellar distribution of superoxide dismutase in plant peroxisomes (glyoxysomes and leaf peroxisomes). Plant Physiol. 1988 Dec;88(4):1215–1218. doi: 10.1104/pp.88.4.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shigeoka S., Nakano Y., Kitaoka S. Metabolism of hydrogen peroxide in Euglena gracilis Z by L-ascorbic acid peroxidase. Biochem J. 1980 Jan 15;186(1):377–380. doi: 10.1042/bj1860377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Streller S., Krömer S., Wingsle G. Isolation and purification of mitochondrial Mn-superoxide dismutase from the gymnosperm Pinus sylvestris L. Plant Cell Physiol. 1994 Sep;35(6):859–867. [PubMed] [Google Scholar]
  27. Thomas T. C., McNamee M. G. Purification of membrane proteins. Methods Enzymol. 1990;182:499–520. doi: 10.1016/0076-6879(90)82040-9. [DOI] [PubMed] [Google Scholar]
  28. Washko P. W., Wang Y., Levine M. Ascorbic acid recycling in human neutrophils. J Biol Chem. 1993 Jul 25;268(21):15531–15535. [PubMed] [Google Scholar]
  29. Yamaguchi K., Mori H., Nishimura M. A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiol. 1995 Sep;36(6):1157–1162. doi: 10.1093/oxfordjournals.pcp.a078862. [DOI] [PubMed] [Google Scholar]
  30. del Río L. A., Sandalio L. M., Palma J. M., Bueno P., Corpas F. J. Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic Biol Med. 1992 Nov;13(5):557–580. doi: 10.1016/0891-5849(92)90150-f. [DOI] [PubMed] [Google Scholar]
  31. del Río L. A., Sevilla F., Sandalio L. M., Palma J. M. Nutritional effect and expression of SODs: induction and gene expression; diagnostics; prospective protection against oxygen toxicity. Free Radic Res Commun. 1991;12-13 Pt 2:819–827. doi: 10.3109/10715769109145863. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES