Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 May;114(1):285–293. doi: 10.1104/pp.114.1.285

The Expression of 2-Oxoglutarate/Malate Translocator in the Bundle-Sheath Mitochondria of Panicum miliaceum, a NAD-Malic Enzyme-Type C4 Plant, Is Regulated by Light and Development.

M Taniguchi 1, T Sugiyama 1
PMCID: PMC158304  PMID: 12223705

Abstract

The bundle-sheath mitochondria in NAD-malic enzyme-type C4 plants participate in the C4 dicarboxylate cycle and require high capacities of translocators to accommodate the high rates of exchange of metabolites involved in photosynthesis. In Panicum miliaceum, a NAD-malic enzyme-type C4 plant, the steady-state level of mRNA for the mitochondrial 2-oxoglutarate (2-OG)/malate translocator was higher in leaves than in nonphotosynthetic tissues. Furthermore, the expression of the gene for the mitochondrial 2-OG/malate translocator was restricted to bundle-sheath cells (BSC) but not mesophyll cells. The transcript level of the BSC-located mitochondrial 2-OG/malate translocator increased during greening in accordance with levels of photosynthetic genes, although the relative transcript levels of other mitochondrial membrane proteins decreased. The specific activities of C4 photosynthetic enzymes and the relative abundance of the 2-OG/malate translocator protein in bundle-sheath mitochondria increased in successive sections from the basal meristem to the distal tip, whereas the specific activities of mitochondrial respiratory enzymes remained constant or decreased. These findings indicate that the specific 2-OG/malate translocator in BSC mitochondria of P. miliaceum is expressed in concert with C4 enzymes during the differentiation of BSC and parallels the capacity of C4 photosynthesis. Most unusual, northern analysis showed that significant amounts of unspliced mRNAs, the levels of which are variable during greening, were present in leaf tissues. It is possible that this incomplete splicing is involved in posttranscriptional regulation of expression of this gene.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Chollet Raymond, Vidal Jean, O'Leary Marion H. PHOSPHOENOLPYRUVATE CARBOXYLASE: A Ubiquitous, Highly Regulated Enzyme in Plants. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):273–298. doi: 10.1146/annurev.arplant.47.1.273. [DOI] [PubMed] [Google Scholar]
  3. Deruère J., Bouvier F., Steppuhn J., Klein A., Camara B., Kuntz M. Structure and expression of two plant genes encoding chromoplast-specific proteins: occurrence of partially spliced transcripts. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1144–1150. doi: 10.1006/bbrc.1994.1350. [DOI] [PubMed] [Google Scholar]
  4. Dolce V., Messina A., Cambria A., Palmieri F. Cloning and sequencing of the rat cDNA encoding the mitochondrial 2-oxoglutarate carrier protein. DNA Seq. 1994;5(2):103–109. doi: 10.3109/10425179409039711. [DOI] [PubMed] [Google Scholar]
  5. Furbank R. T., Agostino A., Hatch M. D. C4 acid decarboxylation and photosynthesis in bundle sheath cells of NAD-malic enzyme-type C4 plants: mechanism and the role of malate and orthophosphate. Arch Biochem Biophys. 1990 Feb 1;276(2):374–381. doi: 10.1016/0003-9861(90)90735-h. [DOI] [PubMed] [Google Scholar]
  6. Hallick R. B., Chelm B. K., Gray P. W., Orozco E. M., Jr Use of aurintricarboxylic acid as an inhibitor of nucleases during nucleic acid isolation. Nucleic Acids Res. 1977 Sep;4(9):3055–3064. doi: 10.1093/nar/4.9.3055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hatch M. D., Tsuzuki M., Edwards G. E. Determination of NAD Malic Enzyme in Leaves of C(4) Plants : EFFECTS OF MALATE DEHYDROGENASE AND OTHER FACTORS. Plant Physiol. 1982 Feb;69(2):483–491. doi: 10.1104/pp.69.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Iacobazzi V., Palmieri F., Runswick M. J., Walker J. E. Sequences of the human and bovine genes for the mitochondrial 2-oxoglutarate carrier. DNA Seq. 1992;3(2):79–88. doi: 10.3109/10425179209034000. [DOI] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Long J. J., Wang J. L., Berry J. O. Cloning and analysis of the C4 photosynthetic NAD-dependent malic enzyme of amaranth mitochondria. J Biol Chem. 1994 Jan 28;269(4):2827–2833. [PubMed] [Google Scholar]
  11. Matsuoka M., Kano-Murakami Y., Tanaka Y., Ozeki Y., Yamamoto N. Nucleotide sequence of cDNA encoding the small subunit of ribulose-1,5-bisphosphate carboxylase from maize. J Biochem. 1987 Oct;102(4):673–676. doi: 10.1093/oxfordjournals.jbchem.a122103. [DOI] [PubMed] [Google Scholar]
  12. Matsuoka M., Ozeki Y., Yamamoto N., Hirano H., Kano-Murakami Y., Tanaka Y. Primary structure of maize pyruvate, orthophosphate dikinase as deduced from cDNA sequence. J Biol Chem. 1988 Aug 15;263(23):11080–11083. [PubMed] [Google Scholar]
  13. Nash J., Walbot V. Bronze-2 Gene Expression and Intron Splicing Patterns in Cells and Tissues of Zea mays L. Plant Physiol. 1992 Sep;100(1):464–471. doi: 10.1104/pp.100.1.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Runswick M. J., Philippides A., Lauria G., Walker J. E. Extension of the mitochondrial transporter super-family: sequences of five members from the nematode worm, Caenorhabditis elegans. DNA Seq. 1994;4(5):281–291. doi: 10.3109/10425179409020854. [DOI] [PubMed] [Google Scholar]
  15. Runswick M. J., Walker J. E., Bisaccia F., Iacobazzi V., Palmieri F. Sequence of the bovine 2-oxoglutarate/malate carrier protein: structural relationship to other mitochondrial transport proteins. Biochemistry. 1990 Dec 18;29(50):11033–11040. doi: 10.1021/bi00502a004. [DOI] [PubMed] [Google Scholar]
  16. Schulz B., Frommer W. B., Flügge U. I., Hummel S., Fischer K., Willmitzer L. Expression of the triose phosphate translocator gene from potato is light dependent and restricted to green tissues. Mol Gen Genet. 1993 Apr;238(3):357–361. doi: 10.1007/BF00291994. [DOI] [PubMed] [Google Scholar]
  17. Taniguchi M., Kobe A., Kato M., Sugiyama T. Aspartate aminotransferase isozymes in Panicum miliaceum L., an NAD-malic enzyme-type C4 plant: comparison of enzymatic properties primary structures, and expression patterns. Arch Biochem Biophys. 1995 Apr 20;318(2):295–306. doi: 10.1006/abbi.1995.1233. [DOI] [PubMed] [Google Scholar]
  18. Taniguchi M., Sawaki H., Sasakawa H., Hase T., Sugiyama T. Cloning and sequence analysis of cDNA encoding aspartate aminotransferase isozymes from Panicum miliaceum L., a C4 plant. Eur J Biochem. 1992 Mar 1;204(2):611–620. doi: 10.1111/j.1432-1033.1992.tb16674.x. [DOI] [PubMed] [Google Scholar]
  19. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weber A., Menzlaff E., Arbinger B., Gutensohn M., Eckerskorn C., Flügge U. I. The 2-oxoglutarate/malate translocator of chloroplast envelope membranes: molecular cloning of a transporter containing a 12-helix motif and expression of the functional protein in yeast cells. Biochemistry. 1995 Feb 28;34(8):2621–2627. doi: 10.1021/bi00008a028. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES