Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 May;114(1):295–305. doi: 10.1104/pp.114.1.295

Cellular basis of hypocotyl growth in Arabidopsis thaliana.

E Gendreau 1, J Traas 1, T Desnos 1, O Grandjean 1, M Caboche 1, H Höfte 1
PMCID: PMC158305  PMID: 9159952

Abstract

The Arabidopsis thaliana hypocotyl is widely used to study the effects of light and plant growth factors on cell elongation. To provide a framework for the molecular-genetic analysis of cell elongation in this organ, here we describe, at the cellular level, its morphology and growth and identify a number of characteristic, developmental differences between light-grown and dark-grown hypocotyls. First, in the light epidermal cells show a characteristic differentiation that is not observed in the dark. Second, elongation growth of this organ does not involve significant cortical or epidermal cell divisions. However, endoreduplication occurs, as revealed by the presence of 4C and 8C nuclei. In addition, 16C nuclei were found specifically in dark-grown seedlings. Third, in the dark epidermal cells elongate along a steep, acropetal spatial and temporal gradient along the hypocotyl. In contrast, in the light all epidermal cells elongated continuously during the entire growth period. These morphological and physiological differences, in combination with previously reported genetic data (T. Desnos, V. Orbovic, C. Bellini, J. Kronenberger, M. Caboche, J. Traas, H. Höfte [1996] Development 122: 683-693), illustrate that light does not simply inhibit hypocotyl growth in a cell-autonomous fashion, but that the observed growth response to light is a part of an integrated developmental change throughout the elongating organ.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boerjan W., Cervera M. T., Delarue M., Beeckman T., Dewitte W., Bellini C., Caboche M., Van Onckelen H., Van Montagu M., Inzé D. Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell. 1995 Sep;7(9):1405–1419. doi: 10.1105/tpc.7.9.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carpita N. C., Gibeaut D. M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993 Jan;3(1):1–30. doi: 10.1111/j.1365-313x.1993.tb00007.x. [DOI] [PubMed] [Google Scholar]
  3. Cheng J. C., Seeley K. A., Sung Z. R. RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip. Plant Physiol. 1995 Feb;107(2):365–376. doi: 10.1104/pp.107.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chory J., Peto C., Feinbaum R., Pratt L., Ausubel F. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell. 1989 Sep 8;58(5):991–999. doi: 10.1016/0092-8674(89)90950-1. [DOI] [PubMed] [Google Scholar]
  5. Cosgrove D. J. Plant cell enlargement and the action of expansins. Bioessays. 1996 Jul;18(7):533–540. doi: 10.1002/bies.950180704. [DOI] [PubMed] [Google Scholar]
  6. De Rocher E. J., Harkins K. R., Galbraith D. W., Bohnert H. J. Developmentally regulated systemic endopolyploid in succulents with small genomes. Science. 1990 Oct 5;250(4977):99–101. doi: 10.1126/science.250.4977.99. [DOI] [PubMed] [Google Scholar]
  7. Desnos T., Orbović V., Bellini C., Kronenberger J., Caboche M., Traas J., Höfte H. Procuste1 mutants identify two distinct genetic pathways controlling hypocotyl cell elongation, respectively in dark- and light-grown Arabidopsis seedlings. Development. 1996 Feb;122(2):683–693. doi: 10.1242/dev.122.2.683. [DOI] [PubMed] [Google Scholar]
  8. Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., Scheres B. Cellular organisation of the Arabidopsis thaliana root. Development. 1993 Sep;119(1):71–84. doi: 10.1242/dev.119.1.71. [DOI] [PubMed] [Google Scholar]
  9. Galbraith D. W., Harkins K. R., Knapp S. Systemic Endopolyploidy in Arabidopsis thaliana. Plant Physiol. 1991 Jul;96(3):985–989. doi: 10.1104/pp.96.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gotô N., Esashi Y. Aging progression involving dwarfism and its acceleration by red light in bean hypocotyls. Plant Physiol. 1976 Apr;57(4):547–552. doi: 10.1104/pp.57.4.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Herr J. M., Jr An analysis of methods for permanently mounting ovules cleared in four-and-a-half type clearing fluids. Stain Technol. 1982 May;57(3):161–169. doi: 10.3109/10520298209066609. [DOI] [PubMed] [Google Scholar]
  12. Lopez-Juez E., Kobayashi M., Sakurai A., Kamiya Y., Kendrick R. E. Phytochrome, Gibberellins, and Hypocotyl Growth (A Study Using the Cucumber (Cucumis sativus L.) long hypocotyl Mutant). Plant Physiol. 1995 Jan;107(1):131–140. doi: 10.1104/pp.107.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McNellis T. W., Deng X. W. Light control of seedling morphogenetic pattern. Plant Cell. 1995 Nov;7(11):1749–1761. doi: 10.1105/tpc.7.11.1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Melaragno J. E., Mehrotra B., Coleman A. W. Relationship between Endopolyploidy and Cell Size in Epidermal Tissue of Arabidopsis. Plant Cell. 1993 Nov;5(11):1661–1668. doi: 10.1105/tpc.5.11.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miséra S., Müller A. J., Weiland-Heidecker U., Jürgens G. The FUSCA genes of Arabidopsis: negative regulators of light responses. Mol Gen Genet. 1994 Aug 2;244(3):242–252. doi: 10.1007/BF00285451. [DOI] [PubMed] [Google Scholar]
  16. Nagl W. DNA endoreduplication and polyteny understood as evolutionary strategies. Nature. 1976 Jun 17;261(5561):614–615. doi: 10.1038/261614a0. [DOI] [PubMed] [Google Scholar]
  17. Quail P. H., Boylan M. T., Parks B. M., Short T. W., Xu Y., Wagner D. Phytochromes: photosensory perception and signal transduction. Science. 1995 May 5;268(5211):675–680. doi: 10.1126/science.7732376. [DOI] [PubMed] [Google Scholar]
  18. Sánchez-Bravo J., Ortuño A. M., Botía J. M., Acosta M., Sabater F. The decrease in auxin polar transport down the lupin hypocotyl could produce the indole-3-acetic Acid distribution responsible for the elongation growth pattern. Plant Physiol. 1992 Sep;100(1):108–114. doi: 10.1104/pp.100.1.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wei N., Kwok S. F., von Arnim A. G., Lee A., McNellis T. W., Piekos B., Deng X. W. Arabidopsis COP8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness. Plant Cell. 1994 May;6(5):629–643. doi: 10.1105/tpc.6.5.629. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES