Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 May;114(1):345–352. doi: 10.1104/pp.114.1.345

A defective signal peptide tethers the floury-2 zein to the endoplasmic reticulum membrane.

J W Gillikin 1, F Zhang 1, C E Coleman 1, H W Bass 1, B A Larkins 1, R S Boston 1
PMCID: PMC158310  PMID: 9159955

Abstract

The maize (Zea mays L.) floury-2 (fl2) mutation is associated with a general decrease in storage protein synthesis, altered protein body morphology, and the synthesis of a novel 24-kD alpha-zein storage protein. Unlike storage proteins in normal kernels and the majority of storage proteins in fl2 kernels, the 24-kD alpha-zein contains a signal peptide that would normally be removed during protein synthesis and processing. The expected processing site of this alpha-zein reveals a putative mutation alanine-->valine (Ala-->Val) that is not found at other junctions between signal sequences and mature proteins. To investigate the impact of such a mutation on signal peptide cleavage, we have assayed the 24-kD fl2 alpha-zein in a co-translational processing system in vitro. Translation of RNA from fl2 kernels or synthetic RNA encoding the fl2 alpha-zein in the presence of microsomes yielded a 24-kD polypeptide. A normal signal peptide sequence, generated by site-directed mutagenesis, restored the capacity of the RNA to direct synthesis of a properly processed protein in a cell-free system. Both the fl2 alpha-zein and the fl2 alpha-zein (Val-->Ala) were translocated into the lumen of the endoplasmic reticulum. The processed fl2 alpha-zein (Val-->Ala) was localized in the soluble portion of the microsomes, whereas the fl2 alpha-zein co-fractionated with the microsomal membranes. By remaining anchored to protein body membranes during endosperm maturation, the fl2 zein may thus constrain storage protein packing and perturb protein body morphology.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argos P., Pedersen K., Marks M. D., Larkins B. A. A structural model for maize zein proteins. J Biol Chem. 1982 Sep 10;257(17):9984–9990. [PubMed] [Google Scholar]
  2. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burr F. A., Burr B. Three mutations in Zea mays affecting zein accumulation: a comparison of zein polypeptides, in vitro synthesis and processing, mRNA levels, and genomic organization. J Cell Biol. 1982 Jul;94(1):201–206. doi: 10.1083/jcb.94.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coleman C. E., Lopes M. A., Gillikin J. W., Boston R. S., Larkins B. A. A defective signal peptide in the maize high-lysine mutant floury 2. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6828–6831. doi: 10.1073/pnas.92.15.6828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fontes E. B., Shank B. B., Wrobel R. L., Moose S. P., OBrian G. R., Wurtzel E. T., Boston R. S. Characterization of an immunoglobulin binding protein homolog in the maize floury-2 endosperm mutant. Plant Cell. 1991 May;3(5):483–496. doi: 10.1105/tpc.3.5.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Galili G., Altschuler Y., Ceriotti A. Synthesis of plant proteins in heterologous systems: Xenopus laevis oocytes. Methods Cell Biol. 1995;50:497–517. doi: 10.1016/s0091-679x(08)61053-5. [DOI] [PubMed] [Google Scholar]
  7. Garratt R., Oliva G., Caracelli I., Leite A., Arruda P. Studies of the zein-like alpha-prolamins based on an analysis of amino acid sequences: implications for their evolution and three-dimensional structure. Proteins. 1993 Jan;15(1):88–99. doi: 10.1002/prot.340150111. [DOI] [PubMed] [Google Scholar]
  8. Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
  9. Hochstrasser D. F., Patchornik A., Merril C. R. Development of polyacrylamide gels that improve the separation of proteins and their detection by silver staining. Anal Biochem. 1988 Sep;173(2):412–423. doi: 10.1016/0003-2697(88)90208-4. [DOI] [PubMed] [Google Scholar]
  10. Larkins B. A., Hurkman W. J. Synthesis and deposition of zein in protein bodies of maize endosperm. Plant Physiol. 1978 Aug;62(2):256–263. doi: 10.1104/pp.62.2.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lending C. R., Larkins B. A. Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell. 1989 Oct;1(10):1011–1023. doi: 10.1105/tpc.1.10.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Li C. P., Larkins B. A. Expression of protein disulfide isomerase is elevated in the endosperm of the maize floury-2 mutant. Plant Mol Biol. 1996 Mar;30(5):873–882. doi: 10.1007/BF00020800. [DOI] [PubMed] [Google Scholar]
  13. Lopes M. A., Coleman C. E., Kodrzycki R., Lending C. R., Larkins B. A. Synthesis of an unusual alpha-zein protein is correlated with the phenotypic effects of the floury2 mutation in maize. Mol Gen Genet. 1994 Dec 1;245(5):537–547. doi: 10.1007/BF00282216. [DOI] [PubMed] [Google Scholar]
  14. Marks M. D., Larkins B. A. Analysis of sequence microheterogeneity among zein messenger RNAs. J Biol Chem. 1982 Sep 10;257(17):9976–9983. [PubMed] [Google Scholar]
  15. Marocco A., Santucci A., Cerioli S., Motto M., Di Fonzo N., Thompson R., Salamini F. Three high-lysine mutations control the level of ATP-binding HSP70-like proteins in the maize endosperm. Plant Cell. 1991 May;3(5):507–515. doi: 10.1105/tpc.3.5.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Parish J. H., Kirby K. S. Reagents which reduce interactions between ribosomal RNA and rapidly labelled RNA from rat liver. Biochim Biophys Acta. 1966 Dec 21;129(3):554–562. doi: 10.1016/0005-2787(66)90070-0. [DOI] [PubMed] [Google Scholar]
  17. Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
  18. Schauer I., Emr S., Gross C., Schekman R. Invertase signal and mature sequence substitutions that delay intercompartmental transport of active enzyme. J Cell Biol. 1985 May;100(5):1664–1675. doi: 10.1083/jcb.100.5.1664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shatters R. G., Jr, Miernyk J. A. A zein signal sequence functions as a signal-anchor when fused to maize alcohol dehydrogenase. Biochim Biophys Acta. 1991 Sep 30;1068(2):179–188. doi: 10.1016/0005-2736(91)90208-p. [DOI] [PubMed] [Google Scholar]
  20. von Heijne G. How signal sequences maintain cleavage specificity. J Mol Biol. 1984 Feb 25;173(2):243–251. doi: 10.1016/0022-2836(84)90192-x. [DOI] [PubMed] [Google Scholar]
  21. von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES