Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jun;114(2):439–444. doi: 10.1104/pp.114.2.439

The Two Forms of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Activase Differ in Sensitivity to Elevated Temperature.

S J Crafts-Brandner 1, F J Van De Loo 1, M E Salvucci 1
PMCID: PMC158323  PMID: 12223718

Abstract

Ribulose-1,5-bisphosphate carboxylase/oxygenase activase often consists of two polypeptides that arise from alternative splicing of pre-mRNA. In this study recombinant versions of the spinach (Spinacea oleracea L.) 45- and 41-kD forms of activase were analyzed for their response to temperature. The temperature optimum for ATP hydrolysis by the 45-kD form was 45[deg]C, approximately 13[deg]C higher than the 41-kD form. When the two forms were mixed, the temperature response of the hybrid enzyme was similar to the 45-kD form. In the absence of adenine nucleotide, preincubation of either activase form at temperatures above 25[deg}C inactivated ATPase activity. Adenosine 5[prime]-([gamma]-thio)triphosphate, but not ADP, significantly enhanced the thermostability of the 45-kD form but was much less effective for the 41-kD form. Intrinsic fluorescence showed that the adenosine 5[prime]-([gamma]-thio)triphosphate-induced subunit aggregation was lost at a much lower temperature for the 41-kD than for the 45-kD form. However, the two activase forms were equally susceptible to limited proteolysis after heat treatment. The results indicate that (a) the 45-kD form is more thermostable than, and confers increased thermal stability to, the 41-kD form, and (b) a loss of subunit interactions, rather than enzyme denaturation, appears to be the initial cause of temperature inactivation of activase.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bournay A. S., Hedley P. E., Maddison A., Waugh R., Machray G. C. Exon skipping induced by cold stress in a potato invertase gene transcript. Nucleic Acids Res. 1996 Jun 15;24(12):2347–2351. doi: 10.1093/nar/24.12.2347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Eckardt N. A., Portis Jr A. R. Heat Denaturation Profiles of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco) and Rubisco Activase and the Inability of Rubisco Activase to Restore Activity of Heat-Denatured Rubisco. Plant Physiol. 1997 Jan;113(1):243–248. doi: 10.1104/pp.113.1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hayer-Hartl M. K., Martin J., Hartl F. U. Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding. Science. 1995 Aug 11;269(5225):836–841. doi: 10.1126/science.7638601. [DOI] [PubMed] [Google Scholar]
  5. Holbrook G. P., Galasinski S. C., Salvucci M. E. Regulation of 2-carboxyarabinitol 1-phosphatase. Plant Physiol. 1991 Nov;97(3):894–899. doi: 10.1104/pp.97.3.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lorimer G. H., Miziorko H. M. Carbamate formation on the epsilon-amino group of a lysyl residue as the basis for the activation of ribulosebisphosphate carboxylase by CO2 and Mg2+. Biochemistry. 1980 Nov 11;19(23):5321–5328. doi: 10.1021/bi00564a027. [DOI] [PubMed] [Google Scholar]
  7. Nussaume L., Harrison K., Klimyuk V., Martienssen R., Sundaresan V., Jones J. D. Analysis of splice donor and acceptor site function in a transposable gene trap derived from the maize element Activator. Mol Gen Genet. 1995 Nov 1;249(1):91–101. doi: 10.1007/BF00290240. [DOI] [PubMed] [Google Scholar]
  8. Robinson S. P., Portis A. R., Jr Adenosine triphosphate hydrolysis by purified rubisco activase. Arch Biochem Biophys. 1989 Jan;268(1):93–99. doi: 10.1016/0003-9861(89)90568-7. [DOI] [PubMed] [Google Scholar]
  9. Rundle S. J., Zielinski R. E. Alterations in barley ribulose-1,5-bisphosphate carboxylase/oxygenase activase gene expression during development and in response to illumination. J Biol Chem. 1991 Aug 5;266(22):14802–14807. [PubMed] [Google Scholar]
  10. Rundle S. J., Zielinski R. E. Organization and expression of two tandemly oriented genes encoding ribulosebisphosphate carboxylase/oxygenase activase in barley. J Biol Chem. 1991 Mar 15;266(8):4677–4685. [PubMed] [Google Scholar]
  11. Salvucci M. E., Klein R. R. Site-directed mutagenesis of a reactive lysyl residue (Lys-247) of Rubisco activase. Arch Biochem Biophys. 1994 Oct;314(1):178–185. doi: 10.1006/abbi.1994.1427. [DOI] [PubMed] [Google Scholar]
  12. Salvucci M. E. Subunit interactions of Rubisco activase: polyethylene glycol promotes self-association, stimulates ATPase and activation activities, and enhances interactions with Rubisco. Arch Biochem Biophys. 1992 Nov 1;298(2):688–696. doi: 10.1016/0003-9861(92)90467-b. [DOI] [PubMed] [Google Scholar]
  13. Salvucci M. E., Werneke J. M., Ogren W. L., Portis A. R. Purification and species distribution of rubisco activase. Plant Physiol. 1987 Jul;84(3):930–936. doi: 10.1104/pp.84.3.930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shen J. B., Orozco E. M., Jr, Ogren W. L. Expression of the two isoforms of spinach ribulose 1,5-bisphosphate carboxylase activase and essentiality of the conserved lysine in the consensus nucleotide-binding domain. J Biol Chem. 1991 May 15;266(14):8963–8968. [PubMed] [Google Scholar]
  15. Sánchez de Jiménez E., Medrano L., Martínez-Barajas E. Rubisco activase, a possible new member of the molecular chaperone family. Biochemistry. 1995 Mar 7;34(9):2826–2831. doi: 10.1021/bi00009a012. [DOI] [PubMed] [Google Scholar]
  16. Wang Z. Y., Portis A. R. Dissociation of ribulose-1,5-bisphosphate bound to ribulose-1,5-bisphosphate carboxylase/oxygenase and its enhancement by ribulose-1,5-bisphosphate carboxylase/oxygenase activase-mediated hydrolysis of ATP. Plant Physiol. 1992 Aug;99(4):1348–1353. doi: 10.1104/pp.99.4.1348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wang Z. Y., Ramage R. T., Portis A. R., Jr Mg2+ and ATP or adenosine 5'-[gamma-thio]-triphosphate (ATP gamma S) enhances intrinsic fluorescence and induces aggregation which increases the activity of spinach Rubisco activase. Biochim Biophys Acta. 1993 Sep 3;1202(1):47–55. doi: 10.1016/0167-4838(93)90061-u. [DOI] [PubMed] [Google Scholar]
  18. Werneke J. M., Chatfield J. M., Ogren W. L. Alternative mRNA splicing generates the two ribulosebisphosphate carboxylase/oxygenase activase polypeptides in spinach and Arabidopsis. Plant Cell. 1989 Aug;1(8):815–825. doi: 10.1105/tpc.1.8.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Werneke J. M., Zielinski R. E., Ogren W. L. Structure and expression of spinach leaf cDNA encoding ribulosebisphosphate carboxylase/oxygenase activase. Proc Natl Acad Sci U S A. 1988 Feb;85(3):787–791. doi: 10.1073/pnas.85.3.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. van de Loo F. J., Salvucci M. E. Activation of ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) involves Rubisco activase Trp16. Biochemistry. 1996 Jun 25;35(25):8143–8148. doi: 10.1021/bi9604901. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES