Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jun;114(2):501–509. doi: 10.1104/pp.114.2.501

Decreased Growth-Induced Water Potential (A Primary Cause of Growth Inhibition at Low Water Potentials).

H Nonami 1, Y Wu 1, J S Boyer 1
PMCID: PMC158330  PMID: 12223723

Abstract

Cell enlargement depends on a growth-induced difference in water potential to move water into the cells. Water deficits decrease this potential difference and inhibit growth. To investigate whether the decrease causes the growth inhibition, pressure was applied to the roots of soybean (Glycine max L. Merr.) seedlings and the growth and potential difference were monitored in the stems. In water-limited plants, the inhibited stem growth increased when the roots were pressurized and it reverted to the previous rate when the pressure was released. The pressure around the roots was perceived as an increased turgor in the stem in small cells next to the xylem, but not in outlying cortical cells. This local effect implied that water transport was impeded by the small cells. The diffusivity for water was much less in the small cells than in the outlying cells. The small cells thus were a barrier that caused the growth-induced potential difference to be large during rapid growth, but to reverse locally during the early part of a water deficit. Such a barrier may be a frequent property of meristems. Because stem growth responded to the pressure-induced recovery of the potential difference across this barrier, we conclude that a decrease in the growth-induced potential difference was a primary cause of the inhibition.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acevedo E., Hsiao T. C., Henderson D. W. Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiol. 1971 Nov;48(5):631–636. doi: 10.1104/pp.48.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bensen R. J., Boyer J. S., Mullet J. E. Water deficit-induced changes in abscisic Acid, growth, polysomes, and translatable RNA in soybean hypocotyls. Plant Physiol. 1988 Oct;88(2):289–294. doi: 10.1104/pp.88.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boyer J. S. Leaf water potentials measured with a pressure chamber. Plant Physiol. 1967 Jan;42(1):133–137. doi: 10.1104/pp.42.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boyer J. S. Relationship of water potential to growth of leaves. Plant Physiol. 1968 Jul;43(7):1056–1062. doi: 10.1104/pp.43.7.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bozarth C. S., Mullet J. E., Boyer J. S. Cell wall proteins at low water potentials. Plant Physiol. 1987 Sep;85(1):261–267. doi: 10.1104/pp.85.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chazen O., Neumann P. M. Hydraulic Signals from the Roots and Rapid Cell-Wall Hardening in Growing Maize (Zea mays L.) Leaves Are Primary Responses to Polyethylene Glycol-Induced Water Deficits. Plant Physiol. 1994 Apr;104(4):1385–1392. doi: 10.1104/pp.104.4.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Creelman R. A., Mason H. S., Bensen R. J., Boyer J. S., Mullet J. E. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings : Analysis of Growth, Sugar Accumulation, and Gene Expression. Plant Physiol. 1990 Jan;92(1):205–214. doi: 10.1104/pp.92.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hüsken D., Steudle E., Zimmermann U. Pressure probe technique for measuring water relations of cells in higher plants. Plant Physiol. 1978 Feb;61(2):158–163. doi: 10.1104/pp.61.2.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mason H. S., Mullet J. E., Boyer J. S. Polysomes, Messenger RNA, and Growth in Soybean Stems during Development and Water Deficit. Plant Physiol. 1988 Mar;86(3):725–733. doi: 10.1104/pp.86.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mason H. S., Mullet J. E. Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. Plant Cell. 1990 Jun;2(6):569–579. doi: 10.1105/tpc.2.6.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Matyssek R., Maruyama S., Boyer J. S. Rapid wall relaxation in elongating tissues. Plant Physiol. 1988 Apr;86(4):1163–1167. doi: 10.1104/pp.86.4.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Molz F. J. Growth-induced Water Potentials in Plant Cells and Tissues. Plant Physiol. 1978 Sep;62(3):423–429. doi: 10.1104/pp.62.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nonami H., Boyer J. S. Direct Demonstration of a Growth-Induced Water Potential Gradient. Plant Physiol. 1993 May;102(1):13–19. doi: 10.1104/pp.102.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nonami H., Boyer J. S. Origin of growth-induced water potential : solute concentration is low in apoplast of enlarging tissues. Plant Physiol. 1987 Mar;83(3):596–601. doi: 10.1104/pp.83.3.596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nonami H., Boyer J. S. Primary events regulating stem growth at low water potentials. Plant Physiol. 1990 Aug;93(4):1601–1609. doi: 10.1104/pp.93.4.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nonami H., Boyer J. S., Steudle E. Pressure probe and isopiestic psychrometer measure similar turgor. Plant Physiol. 1987 Mar;83(3):592–595. doi: 10.1104/pp.83.3.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nonami H., Boyer J. S. Turgor and growth at low water potentials. Plant Physiol. 1989 Mar;89(3):798–804. doi: 10.1104/pp.89.3.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nonami H., Boyer J. S. Wall extensibility and cell hydraulic conductivity decrease in enlarging stem tissues at low water potentials. Plant Physiol. 1990 Aug;93(4):1610–1619. doi: 10.1104/pp.93.4.1610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Scholander P. F., Bradstreet E. D., Hemmingsen E. A., Hammel H. T. Sap Pressure in Vascular Plants: Negative hydrostatic pressure can be measured in plants. Science. 1965 Apr 16;148(3668):339–346. doi: 10.1126/science.148.3668.339. [DOI] [PubMed] [Google Scholar]
  20. Surowy T. K., Boyer J. S. Low water potentials affect expression of genes encoding vegetative storage proteins and plasma membrane proton ATPase in soybean. Plant Mol Biol. 1991 Feb;16(2):251–262. doi: 10.1007/BF00020556. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES