Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jun;114(2):583–589. doi: 10.1104/pp.114.2.583

Regulation of the Accumulation and Reduction of Nitrate by Nitrogen and Carbon Metabolites in Maize Seedlings.

S Sivasankar 1, S Rothstein 1, A Oaks 1
PMCID: PMC158340  PMID: 12223730

Abstract

The accumulation and reduction of nitrate in the presence of the nitrogen metabolites asparagine (Asn) and glutamine (Gln) and the carbon metabolite sucrose (Suc) were examined in maize (Zea mays L.) seedlings in an attempt to separate their effects on the nitrate uptake system and the nitrate reduction system. After 8 h of exposure to nitrate in the presence of 1 mM Asn, tissue nitrate accumulation was reduced at 250 [mu]M external nitrate, but not at 5 mM Asn. The induction of nitrate reductase (NR) activity was reduced at both external nitrate concentrations. In the presence of 1 mM Gln or 1% Suc, tissue nitrate concentration was not significantly altered, but the induction of root NR activity was reduced or enhanced, respectively. The induction of root nitrite reductase (NiR) activity was also reduced in the presence of Asn or Gln and enhanced in the presence of Suc. Transcript levels of NR and NiR in roots were reduced in the presence of the amides and enhanced in the presence of Suc. When Suc was present in combination with either amide, there was complete relief from the inhibition of NiR transcription observed in the presence of amide alone. In the case of NR, however, this relief from inhibition was negligible. The inhibition of the induction of NR and NiR activities in the presence of Gln and Asn is a direct effect and is not the result of altered nitrate uptake in the presence of these metabolites.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng C. L., Acedo G. N., Cristinsin M., Conkling M. A. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1861–1864. doi: 10.1073/pnas.89.5.1861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Crawford N. M., Arst H. N., Jr The molecular genetics of nitrate assimilation in fungi and plants. Annu Rev Genet. 1993;27:115–146. doi: 10.1146/annurev.ge.27.120193.000555. [DOI] [PubMed] [Google Scholar]
  3. Genix P., Bligny R., Martin J. B., Douce R. Transient accumulation of asparagine in sycamore cells after a long period of sucrose starvation. Plant Physiol. 1990 Oct;94(2):717–722. doi: 10.1104/pp.94.2.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Henriksen G. H., Spanswick R. M. Investigation of the Apparent Induction of Nitrate Uptake in Barley (Hordeum vulgare L.) Using NO3--Selective Microelectrodes (Modulation of Coarse Regulation of NO3- Uptake by Exogenous Application of Downstream Metabolites in the NO3- Assimilatory Pathway). Plant Physiol. 1993 Nov;103(3):885–892. doi: 10.1104/pp.103.3.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lahners K., Kramer V., Back E., Privalle L., Rothstein S. Molecular cloning of complementary DNA encoding maize nitrite reductase: molecular analysis and nitrate induction. Plant Physiol. 1988 Nov;88(3):741–746. doi: 10.1104/pp.88.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lam H. M., Peng S. S., Coruzzi G. M. Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiol. 1994 Dec;106(4):1347–1357. doi: 10.1104/pp.106.4.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Li X. Z., Oaks A. Induction and Turnover of Nitrate Reductase in Zea mays (Influence of NO3-). Plant Physiol. 1993 Aug;102(4):1251–1257. doi: 10.1104/pp.102.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sivasankar S., Oaks A. Regulation of Nitrate Reductase during Early Seedling Growth (A Role for Asparagine and Glutamine). Plant Physiol. 1995 Apr;107(4):1225–1231. doi: 10.1104/pp.107.4.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stulen I., Oaks A. Asparagine synthetase in corn roots. Plant Physiol. 1977 Nov;60(5):680–683. doi: 10.1104/pp.60.5.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Vincentz M., Moureaux T., Leydecker M. T., Vaucheret H., Caboche M. Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J. 1993 Feb;3(2):315–324. doi: 10.1111/j.1365-313x.1993.tb00183.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES