Abstract
A cDNA encoding a nucleolar protein was selected from a pea (Pisum sativum) plumule library, cloned, and sequenced. The translated sequence of the cDNA has significant percent identity to Xenopus laevis nucleolin (31%), the alfalfa (Medicago sativa) nucleolin homolog (66%), and the yeast (Saccharomyces cerevisiae) nucleolin homolog (NSR1) (28%). It also has sequence patterns in its primary structure that are characteristic of all nucleolins, including an N-terminal acidic motif, RNA recognition motifs, and a C-terminal Gly- and Arg-rich domain. By immunoblot analysis, the polyclonal antibodies used to select the cDNA bind selectively to a 90-kD protein in purified pea nuclei and nucleoli and to an 88-kD protein in extracts of Escherichia coli expressing the cDNA. In immunolocalization assays of pea plumule cells, the antibodies stained primarily a region surrounding the fibrillar center of nucleoli, where animal nucleolins are typically found. Southern analysis indicated that the pea nucleolin-like protein is encoded by a single gene, and northern analysis showed that the labeled cDNA binds to a single band of RNA, approximately the same size and the cDNA. After irradiation of etiolated pea seedlings by red light, the mRNA level in plumules decreased during the 1st hour and then increased to a peak of six times the 0-h level at 12 h. Far-red light reversed this effect of red light, and the mRNA accumulation from red/far-red light irradiation was equal to that found in the dark control. This indicates that phytochrome may regulate the expression of this gene.
Full Text
The Full Text of this article is available as a PDF (2.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baerson S. R., Kaufman L. S. Increased rRNA gene activity during a specific window of early pea leaf development. Mol Cell Biol. 1990 Feb;10(2):842–845. doi: 10.1128/mcb.10.2.842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bandziulis R. J., Swanson M. S., Dreyfuss G. RNA-binding proteins as developmental regulators. Genes Dev. 1989 Apr;3(4):431–437. doi: 10.1101/gad.3.4.431. [DOI] [PubMed] [Google Scholar]
- Borer R. A., Lehner C. F., Eppenberger H. M., Nigg E. A. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell. 1989 Feb 10;56(3):379–390. doi: 10.1016/0092-8674(89)90241-9. [DOI] [PubMed] [Google Scholar]
- Bourbon H. M., Lapeyre B., Amalric F. Structure of the mouse nucleolin gene. The complete sequence reveals that each RNA binding domain is encoded by two independent exons. J Mol Biol. 1988 Apr 20;200(4):627–638. doi: 10.1016/0022-2836(88)90476-7. [DOI] [PubMed] [Google Scholar]
- Bögre L., Jonak C., Mink M., Meskiene I., Traas J., Ha D. T., Swoboda I., Plank C., Wagner E., Heberle-Bors E. Developmental and cell cycle regulation of alfalfa nucMs1, a plant homolog of the yeast Nsr1 and mammalian nucleolin. Plant Cell. 1996 Mar;8(3):417–428. [PMC free article] [PubMed] [Google Scholar]
- Caizergues-Ferrer M., Belenguer P., Lapeyre B., Amalric F., Wallace M. O., Olson M. O. Phosphorylation of nucleolin by a nucleolar type NII protein kinase. Biochemistry. 1987 Dec 1;26(24):7876–7883. doi: 10.1021/bi00398a051. [DOI] [PubMed] [Google Scholar]
- Caizergues-Ferrer M., Mariottini P., Curie C., Lapeyre B., Gas N., Amalric F., Amaldi F. Nucleolin from Xenopus laevis: cDNA cloning and expression during development. Genes Dev. 1989 Mar;3(3):324–333. doi: 10.1101/gad.3.3.324. [DOI] [PubMed] [Google Scholar]
- Chen Y. R., Datta N., Roux S. J. Purification and partial characterization of a calmodulin-stimulated nucleoside triphosphatase from pea nuclei. J Biol Chem. 1987 Aug 5;262(22):10689–10694. [PubMed] [Google Scholar]
- Datta N., Chen Y. R., Roux S. J. Phytochrome and calcium stimulation of protein phosphorylation in isolated pea nuclei. Biochem Biophys Res Commun. 1985 May 16;128(3):1403–1408. doi: 10.1016/0006-291x(85)91096-4. [DOI] [PubMed] [Google Scholar]
- Gas N., Inchauspé G., Azum M. C., Stevens B. Bismuth staining of a nucleolar protein. Exp Cell Res. 1984 Apr;151(2):447–457. doi: 10.1016/0014-4827(84)90394-x. [DOI] [PubMed] [Google Scholar]
- Kibbey M. C., Johnson B., Petryshyn R., Jucker M., Kleinman H. K. A 110-kD nuclear shuttling protein, nucleolin, binds to the neurite-promoting IKVAV site of laminin-1. J Neurosci Res. 1995 Oct 15;42(3):314–322. doi: 10.1002/jnr.490420305. [DOI] [PubMed] [Google Scholar]
- Kim S. H., Shinkle J. R., Roux S. J. Phytochrome induces changes in the immunodetectable level of a wall peroxidase that precede growth changes in maize seedlings. Proc Natl Acad Sci U S A. 1989 Dec;86:9866–9870. doi: 10.1073/pnas.86.24.9866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleinman H. K., Weeks B. S., Cannon F. B., Sweeney T. M., Sephel G. C., Clement B., Zain M., Olson M. O., Jucker M., Burrous B. A. Identification of a 110-kDa nonintegrin cell surface laminin-binding protein which recognizes an A chain neurite-promoting peptide. Arch Biochem Biophys. 1991 Nov 1;290(2):320–325. doi: 10.1016/0003-9861(91)90547-v. [DOI] [PubMed] [Google Scholar]
- Kondo K., Inouye M. Yeast NSR1 protein that has structural similarity to mammalian nucleolin is involved in pre-rRNA processing. J Biol Chem. 1992 Aug 15;267(23):16252–16258. [PubMed] [Google Scholar]
- Kondo K., Kowalski L. R., Inouye M. Cold shock induction of yeast NSR1 protein and its role in pre-rRNA processing. J Biol Chem. 1992 Aug 15;267(23):16259–16265. [PubMed] [Google Scholar]
- Lapeyre B., Bourbon H., Amalric F. Nucleolin, the major nucleolar protein of growing eukaryotic cells: an unusual protein structure revealed by the nucleotide sequence. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1472–1476. doi: 10.1073/pnas.84.6.1472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee W. C., Xue Z. X., Mélèse T. The NSR1 gene encodes a protein that specifically binds nuclear localization sequences and has two RNA recognition motifs. J Cell Biol. 1991 Apr;113(1):1–12. doi: 10.1083/jcb.113.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee W. C., Zabetakis D., Mélèse T. NSR1 is required for pre-rRNA processing and for the proper maintenance of steady-state levels of ribosomal subunits. Mol Cell Biol. 1992 Sep;12(9):3865–3871. doi: 10.1128/mcb.12.9.3865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li H., Dauwalder M., Roux S. J. Partial purification and characterization of a Ca(2+)-dependent protein kinase from pea nuclei. Plant Physiol. 1991;96:720–727. doi: 10.1104/pp.96.3.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lischwe M. A., Richards R. L., Busch R. K., Busch H. Localization of phosphoprotein C23 to nucleolar structures and to the nucleolus organizer regions. Exp Cell Res. 1981 Nov;136(1):101–109. doi: 10.1016/0014-4827(81)90041-0. [DOI] [PubMed] [Google Scholar]
- Locke M., Huie P. Bismuth staining for light and electron microscopy. Tissue Cell. 1977;9(2):347–371. doi: 10.1016/0040-8166(77)90026-x. [DOI] [PubMed] [Google Scholar]
- Maridor G., Nigg E. A. cDNA sequences of chicken nucleolin/C23 and NO38/B23, two major nucleolar proteins. Nucleic Acids Res. 1990 Mar 11;18(5):1286–1286. doi: 10.1093/nar/18.5.1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin L. N. Separation of guinea pig IgG subclasses by affinity chromatography on protein A-sepharose. J Immunol Methods. 1982 Jul 30;52(2):205–212. doi: 10.1016/0022-1759(82)90046-1. [DOI] [PubMed] [Google Scholar]
- Martin M., Garcia-Fernandez L. F., Díaz de la Espina S. M., Noaillac-Depeyre J., Gas N., Javier Medina F. Identification and localization of a nucleolin homologue in onion nucleoli. Exp Cell Res. 1992 Mar;199(1):74–84. doi: 10.1016/0014-4827(92)90463-i. [DOI] [PubMed] [Google Scholar]
- Murray M. G., Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980 Oct 10;8(19):4321–4325. doi: 10.1093/nar/8.19.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peter M., Nakagawa J., Dorée M., Labbé J. C., Nigg E. A. Identification of major nucleolar proteins as candidate mitotic substrates of cdc2 kinase. Cell. 1990 Mar 9;60(5):791–801. doi: 10.1016/0092-8674(90)90093-t. [DOI] [PubMed] [Google Scholar]
- Rankin M. L., Heine M. A., Xiao S., LeBlanc M. D., Nelson J. W., DiMario P. J. A complete nucleolin cDNA sequence from Xenopus laevis. Nucleic Acids Res. 1993 Jan 11;21(1):169–169. doi: 10.1093/nar/21.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheer U., Thiry M., Goessens G. Structure, function and assembly of the nucleolus. Trends Cell Biol. 1993 Jul;3(7):236–241. doi: 10.1016/0962-8924(93)90123-i. [DOI] [PubMed] [Google Scholar]
- Suzuki N., Matsui H., Hosoya T. Effects of androgen and polyamines on the phosphorylation of nucleolar proteins from rat ventral prostates with particular reference to 110-kDa phosphoprotein. J Biol Chem. 1985 Jul 5;260(13):8050–8055. [PubMed] [Google Scholar]
- Thien W., Schopfer P. Control by Phytochrome of Cytoplasmic Precursor rRNA Synthesis in the Cotyledons of Mustard Seedlings. Plant Physiol. 1982 May;69(5):1156–1160. doi: 10.1104/pp.69.5.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valdez B. C., Henning D., Le T. V., Busch H. Specific aspartic acid-rich sequences are responsible for silver staining of nucleolar proteins. Biochem Biophys Res Commun. 1995 Feb 15;207(2):485–491. doi: 10.1006/bbrc.1995.1214. [DOI] [PubMed] [Google Scholar]
- Wadsworth G. J., Redinbaugh M. G., Scandalios J. G. A procedure for the small-scale isolation of plant RNA suitable for RNA blot analysis. Anal Biochem. 1988 Jul;172(1):279–283. doi: 10.1016/0003-2697(88)90443-5. [DOI] [PubMed] [Google Scholar]
- Warrener P., Petryshyn R. Phosphorylation and proteolytic degradation of nucleolin from 3T3-F442A cells. Biochem Biophys Res Commun. 1991 Oct 31;180(2):716–723. doi: 10.1016/s0006-291x(05)81124-6. [DOI] [PubMed] [Google Scholar]
- Xue Z., Mélèse T. Nucleolar proteins that bind NLSs: a role in nuclear import or ribosome biogenesis? Trends Cell Biol. 1994 Dec;4(12):414–417. doi: 10.1016/0962-8924(94)90095-7. [DOI] [PubMed] [Google Scholar]
- Xue Z., Shan X., Lapeyre B., Mélèse T. The amino terminus of mammalian nucleolin specifically recognizes SV40 T-antigen type nuclear localization sequences. Eur J Cell Biol. 1993 Oct;62(1):13–21. [PubMed] [Google Scholar]