Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Plant Physiology logoLink to Plant Physiology
. 1997 Jun;114(2):653–660. doi: 10.1104/pp.114.2.653

A nitrate-inducible ferredoxin in maize roots. Genomic organization and differential expression of two nonphotosynthetic ferredoxin isoproteins.

T Matsumura 1, H Sakakibara 1, R Nakano 1, Y Kimata 1, T Sugiyama 1, T Hase 1
PMCID: PMC158349  PMID: 9193097

Abstract

We have identified and characterized a nitrate-inducible ferredoxin (Fd) in maize (Zea mays L.) roots by structural analysis of the purified protein and by cloning of its cDNA and gene. In maize Fd isoproteins are encoded by a small multigene family, and the nitrate-inducible Fd was identified as a novel isoprotein, designated Fd VI, which differed from an Fd I to Fd V identified to date. In the roots of seedlings cultured without nitrate, Fd VI was undetectable. However, during the induction of the capacity for nitrate assimilation, the amount of Fd VI increased markedly within 24 h. Concurrently, the level of transcript for Fd VI increased, but more quickly, reaching a maximal level within 2 h with kinetics similar to those of nitrite reductase and Fd-NADP+ reductase. Fd III was constitutively expressed in roots, and no such changes at the protein and mRNA levels were observed during the nitrate induction. In the 5' flanking region of the gene for Fd VI only, we identified NIT-2 motifs, which are widely found in genes for enzymes related to nitrogen metabolism. These data indicate that Fd VI is co-induced with the previously characterized enzymes involved in nitrate assimilation, and they suggest that the novel Fd isoprotein, distinct from the constitutively expressed Fd, might play an important role as an electron carrier from NADPH to nitrite reductase and other Fd-dependent enzymes in root plastids.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso J. M., Chamarro J., Granell A. A non-photosynthetic ferredoxin gene is induced by ethylene in Citrus organs. Plant Mol Biol. 1995 Dec;29(6):1211–1221. doi: 10.1007/BF00020463. [DOI] [PubMed] [Google Scholar]
  2. Aoki H., Ida S. Nucleotide sequence of a rice root ferredoxin-NADP+ reductase cDNA and its induction by nitrate. Biochim Biophys Acta. 1994 Jan 4;1183(3):553–556. doi: 10.1016/0005-2728(94)90085-x. [DOI] [PubMed] [Google Scholar]
  3. Aoki H., Tanaka K., Ida S. The genomic organization of the gene encoding a nitrate-inducible ferredoxin-NADP+ oxidoreductase from rice roots. Biochim Biophys Acta. 1995 May 10;1229(3):389–392. doi: 10.1016/0005-2728(95)00032-e. [DOI] [PubMed] [Google Scholar]
  4. Crawford N. M. Nitrate: nutrient and signal for plant growth. Plant Cell. 1995 Jul;7(7):859–868. doi: 10.1105/tpc.7.7.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Elliott R. C., Dickey L. F., White M. J., Thompson W. F. cis-Acting Elements for Light Regulation of Pea Ferredoxin I Gene Expression Are Located within Transcribed Sequences. Plant Cell. 1989 Jul;1(7):691–698. doi: 10.1105/tpc.1.7.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  7. Fu Y. H., Marzluf G. A. nit-2, the major positive-acting nitrogen regulatory gene of Neurospora crassa, encodes a sequence-specific DNA-binding protein. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5331–5335. doi: 10.1073/pnas.87.14.5331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hase T., Kimata Y., Yonekura K., Matsumura T., Sakakibara H. Molecular cloning and differential expression of the maize ferredoxin gene family. Plant Physiol. 1991 May;96(1):77–83. doi: 10.1104/pp.96.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hirasawa M., Chang K. T., Knaff D. B. Characterization of a ferredoxin:NADP+ oxidoreductase from a nonphotosynthetic plant tissue. Arch Biochem Biophys. 1990 Jan;276(1):251–258. doi: 10.1016/0003-9861(90)90035-w. [DOI] [PubMed] [Google Scholar]
  10. Knaff D. B., Hirasawa M. Ferredoxin-dependent chloroplast enzymes. Biochim Biophys Acta. 1991 Jan 22;1056(2):93–125. doi: 10.1016/s0005-2728(05)80277-4. [DOI] [PubMed] [Google Scholar]
  11. Lahners K., Kramer V., Back E., Privalle L., Rothstein S. Molecular cloning of complementary DNA encoding maize nitrite reductase: molecular analysis and nitrate induction. Plant Physiol. 1988 Nov;88(3):741–746. doi: 10.1104/pp.88.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lauter F. R., Ninnemann O., Bucher M., Riesmeier J. W., Frommer W. B. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8139–8144. doi: 10.1073/pnas.93.15.8139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lin Y., Hwang C. F., Brown J. B., Cheng C. L. 5' proximal regions of Arabidopsis nitrate reductase genes direct nitrate-induced transcription in transgenic tobacco. Plant Physiol. 1994 Oct;106(2):477–484. doi: 10.1104/pp.106.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liu L., Maillet D. S., Frappier J. R., Walden D. B., Atkinson B. G. Characterization, chromosomal mapping, and expression of different polyubiquitin genes in tissues from control and heat-shocked maize seedlings. Biochem Cell Biol. 1995 Jan-Feb;73(1-2):19–30. doi: 10.1139/o95-003. [DOI] [PubMed] [Google Scholar]
  15. Marzluf G. A. Regulation of sulfur and nitrogen metabolism in filamentous fungi. Annu Rev Microbiol. 1993;47:31–55. doi: 10.1146/annurev.mi.47.100193.000335. [DOI] [PubMed] [Google Scholar]
  16. Privalle L. S., Lahners K. N., Mullins M. A., Rothstein S. Nitrate effects on nitrate reductase activity and nitrite reductase mRNA levels in maize suspension cultures. Plant Physiol. 1989 Jul;90(3):962–967. doi: 10.1104/pp.90.3.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Redinbaugh M. G., Campbell W. H. Glutamine Synthetase and Ferredoxin-Dependent Glutamate Synthase Expression in the Maize (Zea mays) Root Primary Response to Nitrate (Evidence for an Organ-Specific Response). Plant Physiol. 1993 Apr;101(4):1249–1255. doi: 10.1104/pp.101.4.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rufty T. W., Thomas J. F., Remmler J. L., Campbell W. H., Volk R. J. Intercellular localization of nitrate reductase in roots. Plant Physiol. 1986 Nov;82(3):675–680. doi: 10.1104/pp.82.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sakakibara H., Fujii K., Sugiyama T. Isolation and characterization of a cDNA that encodes maize glutamate dehydrogenase. Plant Cell Physiol. 1995 Jul;36(5):789–797. doi: 10.1093/oxfordjournals.pcp.a078823. [DOI] [PubMed] [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Suzuki A., Oaks A., Jacquot J. P., Vidal J., Gadal P. An electron transport system in maize roots for reactions of glutamate synthase and nitrite reductase : physiological and immunochemical properties of the electron carrier and pyridine nucleotide reductase. Plant Physiol. 1985 Jun;78(2):374–378. doi: 10.1104/pp.78.2.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Suzuki S., Izumihara K., Hase T. Plastid import and iron-sulfur cluster assembly of photosynthetic and nonphotosynthetic ferredoxin isoproteins in maize. Plant Physiol. 1991 Sep;97(1):375–380. doi: 10.1104/pp.97.1.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tanaka T., Ida S., Irifune K., Oeda K., Morikawa H. Nucleotide sequence of a gene for nitrite reductase from Arabidopsis thaliana. DNA Seq. 1994;5(1):57–61. doi: 10.3109/10425179409039705. [DOI] [PubMed] [Google Scholar]
  24. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vorst O., van Dam F., Oosterhoff-Teertstra R., Smeekens S., Weisbeek P. Tissue-specific expression directed by an Arabidopsis thaliana pre-ferredoxin promoter in transgenic tobacco plants. Plant Mol Biol. 1990 Apr;14(4):491–499. doi: 10.1007/BF00027495. [DOI] [PubMed] [Google Scholar]
  26. Wada K., Onda M., Matsubara H. Amino acid sequences of ferredoxin isoproteins from radish roots. J Biochem. 1989 Apr;105(4):619–625. doi: 10.1093/oxfordjournals.jbchem.a122714. [DOI] [PubMed] [Google Scholar]
  27. Wadsworth G. J., Redinbaugh M. G., Scandalios J. G. A procedure for the small-scale isolation of plant RNA suitable for RNA blot analysis. Anal Biochem. 1988 Jul;172(1):279–283. doi: 10.1016/0003-2697(88)90443-5. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES