Abstract
A glutamyl proteinase was partially purified from Percoll gradient-purified spinach (Spinacia oleracea) chloroplast preparations and appeared to be predominantly localized in the chloroplast stroma. The enzyme degraded casein, but of the 11 synthetic endopeptidase substrates tested, only benzyloxycarbonyl-leucine-leucine-glutamic acid-[beta]-napthylamide was hydrolyzed at measurable rates. In addition, the enzyme cleaved the oxidized [beta]-chain of insulin after a glutamic acid residue. There was no evidence that native ribulose-1,5-bisphosphate carboxylase/oxygenase was cleaved by this proteinase. The apparent Km for benzyloxycarbonyl-leucine-leucine-glutamic acid-[beta]NA at the pH optimum of 8.0 was about 1 mM. Cl-ions were required for both activity and stability. Of the proteinase inhibitors covering all four classes of the endopeptidases, only 4-(2-aminoethyl)-benzenesulfonyl-fluoride HCl and L-1-chloro-3-[4-tosylamido]-4-phenyl-2-butanone significantly inhibited the proteinase. The partially purified enzyme had a molecular weight of about 350,000 to 380,000, based on size-exclusion chromatography. The enzyme has both similar and distinctive properties to those of the bacterial glutamyl proteinases. To our knowledge, this is the first description of a plant glutamyl proteinase found predominantly or exclusively in the chloroplast.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birktoft J. J., Breddam K. Glutamyl endopeptidases. Methods Enzymol. 1994;244:114–126. doi: 10.1016/0076-6879(94)44010-7. [DOI] [PubMed] [Google Scholar]
- Bowyer J. R., Packer J. C., McCormack B. A., Whitelegge J. P., Robinson C., Taylor M. A. Carboxyl-terminal processing of the D1 protein and photoactivation of water-splitting in photosystem II. Partial purification and characterization of the processing enzyme from Scenedesmus obliquus and Pisum sativum. J Biol Chem. 1992 Mar 15;267(8):5424–5433. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Bushnell T. P., Bushnell D., Jagendorf A. T. A Purified Zinc Protease of Pea Chloroplasts, EP1, Degrades the Large Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase. Plant Physiol. 1993 Oct;103(2):585–591. doi: 10.1104/pp.103.2.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke A. K., Gustafsson P., Lidholm J. A. Identification and expression of the chloroplast clpP gene in the conifer Pinus contorta. Plant Mol Biol. 1994 Nov;26(3):851–862. doi: 10.1007/BF00028853. [DOI] [PubMed] [Google Scholar]
- Fujita T., Kouchi H., Ichikawa T., Syõno K. Isolation and characterization of a cDNA that encodes a novel proteinase inhibitor I from a tobacco genetic tumor. Plant Cell Physiol. 1993 Jan;34(1):137–142. [PubMed] [Google Scholar]
- Gillham N. W., Boynton J. E., Hauser C. R. Translational regulation of gene expression in chloroplasts and mitochondria. Annu Rev Genet. 1994;28:71–93. doi: 10.1146/annurev.ge.28.120194.000443. [DOI] [PubMed] [Google Scholar]
- Gray J. C., Hird S. M., Dyer T. A. Nucleotide sequence of a wheat chloroplast gene encoding the proteolytic subunit of an ATP-dependent protease. Plant Mol Biol. 1990 Dec;15(6):947–950. doi: 10.1007/BF00039435. [DOI] [PubMed] [Google Scholar]
- Hoober J. K., Hughes M. J. Purification and Characterization of a Membrane-Bound Protease from Chlamydomonas reinhardtii. Plant Physiol. 1992 Jul;99(3):932–937. doi: 10.1104/pp.99.3.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuwabara T. Characterization of a prolyl endopeptidase from spinach thylakoids. FEBS Lett. 1992 Mar 30;300(2):127–130. doi: 10.1016/0014-5793(92)80179-k. [DOI] [PubMed] [Google Scholar]
- Laing W. A., Christeller J. T. A model for the kinetics of activation and catalysis of ribulose 1,5-bisphosphate carboxylase. Biochem J. 1976 Dec 1;159(3):563–570. doi: 10.1042/bj1590563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linthorst H. J., Brederode F. T., van der Does C., Bol J. F. Tobacco proteinase inhibitor I genes are locally, but not systemically induced by stress. Plant Mol Biol. 1993 Mar;21(6):985–992. doi: 10.1007/BF00023597. [DOI] [PubMed] [Google Scholar]
- Liu X. Q., Jagendorf A. T. Neutral peptidases in the stroma of pea chloroplasts. Plant Physiol. 1986 Jun;81(2):603–608. doi: 10.1104/pp.81.2.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margossian L. J., Federman A. D., Giovannoni J. J., Fischer R. L. Ethylene-regulated expression of a tomato fruit ripening gene encoding a proteinase inhibitor I with a glutamic residue at the reactive site. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8012–8016. doi: 10.1073/pnas.85.21.8012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore T., Keegstra K. Characterization of a cDNA clone encoding a chloroplast-targeted Clp homologue. Plant Mol Biol. 1993 Feb;21(3):525–537. doi: 10.1007/BF00028809. [DOI] [PubMed] [Google Scholar]
- Musgrove J. E., Elderfield P. D., Robinson C. Endopeptidases in the stroma and thylakoids of pea chloroplasts. Plant Physiol. 1989 Aug;90(4):1616–1621. doi: 10.1104/pp.90.4.1616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ozaki M., Fujinami K., Tanaka K., Amemiya Y., Sato T., Ogura N., Nakagawa H. Purification and initial characterization of the proteasome from the higher plant Spinacia oleracea. J Biol Chem. 1992 Oct 25;267(30):21678–21684. [PubMed] [Google Scholar]
- Rawlings N. D., Barrett A. J. Families of serine peptidases. Methods Enzymol. 1994;244:19–61. doi: 10.1016/0076-6879(94)44004-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson C., Ellis R. J. Transport of proteins into chloroplasts. Partial purification of a chloroplast protease involved in the processing of important precursor polypeptides. Eur J Biochem. 1984 Jul 16;142(2):337–342. doi: 10.1111/j.1432-1033.1984.tb08291.x. [DOI] [PubMed] [Google Scholar]
- Roughan G. A semi-preparative enzymic synthesis of malonyl-CoA from [14C]acetate and 14CO2: labelling in the 1, 2 or 3 position. Biochem J. 1994 Jun 1;300(Pt 2):355–358. doi: 10.1042/bj3000355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Shanklin J., DeWitt N. D., Flanagan J. M. The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpA: an archetypal two-component ATP-dependent protease. Plant Cell. 1995 Oct;7(10):1713–1722. doi: 10.1105/tpc.7.10.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thayer S. S., Choe H. T., Rausser S., Huffaker R. C. Characterization and subcellular localization of aminopeptidases in senescing barley leaves. Plant Physiol. 1988;87:894–897. doi: 10.1104/pp.87.4.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ting I. P. Malic dehydrogenases in corn root tips. Arch Biochem Biophys. 1968 Jul;126(1):1–7. doi: 10.1016/0003-9861(68)90552-3. [DOI] [PubMed] [Google Scholar]
- Waters S. P., Noble E. R., Dalling M. J. Intracellular Localization of Peptide Hydrolases in Wheat (Triticum aestivum L.) Leaves. Plant Physiol. 1982 Mar;69(3):575–579. doi: 10.1104/pp.69.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weglöhner W., Subramanian A. R. Nucleotide sequence of a region of maize chloroplast DNA containing the 3' end of clpP, exon 1 of rps12 and rpl20 and their cotranscription. Plant Mol Biol. 1992 Jan;18(2):415–418. doi: 10.1007/BF00034970. [DOI] [PubMed] [Google Scholar]