Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jun;114(2):715–722. doi: 10.1104/pp.114.2.715

A Plant Chloroplast Glutamyl Proteinase.

W A Laing 1, J T Christeller 1
PMCID: PMC158356  PMID: 12223739

Abstract

A glutamyl proteinase was partially purified from Percoll gradient-purified spinach (Spinacia oleracea) chloroplast preparations and appeared to be predominantly localized in the chloroplast stroma. The enzyme degraded casein, but of the 11 synthetic endopeptidase substrates tested, only benzyloxycarbonyl-leucine-leucine-glutamic acid-[beta]-napthylamide was hydrolyzed at measurable rates. In addition, the enzyme cleaved the oxidized [beta]-chain of insulin after a glutamic acid residue. There was no evidence that native ribulose-1,5-bisphosphate carboxylase/oxygenase was cleaved by this proteinase. The apparent Km for benzyloxycarbonyl-leucine-leucine-glutamic acid-[beta]NA at the pH optimum of 8.0 was about 1 mM. Cl-ions were required for both activity and stability. Of the proteinase inhibitors covering all four classes of the endopeptidases, only 4-(2-aminoethyl)-benzenesulfonyl-fluoride HCl and L-1-chloro-3-[4-tosylamido]-4-phenyl-2-butanone significantly inhibited the proteinase. The partially purified enzyme had a molecular weight of about 350,000 to 380,000, based on size-exclusion chromatography. The enzyme has both similar and distinctive properties to those of the bacterial glutamyl proteinases. To our knowledge, this is the first description of a plant glutamyl proteinase found predominantly or exclusively in the chloroplast.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birktoft J. J., Breddam K. Glutamyl endopeptidases. Methods Enzymol. 1994;244:114–126. doi: 10.1016/0076-6879(94)44010-7. [DOI] [PubMed] [Google Scholar]
  2. Bowyer J. R., Packer J. C., McCormack B. A., Whitelegge J. P., Robinson C., Taylor M. A. Carboxyl-terminal processing of the D1 protein and photoactivation of water-splitting in photosystem II. Partial purification and characterization of the processing enzyme from Scenedesmus obliquus and Pisum sativum. J Biol Chem. 1992 Mar 15;267(8):5424–5433. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Bushnell T. P., Bushnell D., Jagendorf A. T. A Purified Zinc Protease of Pea Chloroplasts, EP1, Degrades the Large Subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase. Plant Physiol. 1993 Oct;103(2):585–591. doi: 10.1104/pp.103.2.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clarke A. K., Gustafsson P., Lidholm J. A. Identification and expression of the chloroplast clpP gene in the conifer Pinus contorta. Plant Mol Biol. 1994 Nov;26(3):851–862. doi: 10.1007/BF00028853. [DOI] [PubMed] [Google Scholar]
  6. Fujita T., Kouchi H., Ichikawa T., Syõno K. Isolation and characterization of a cDNA that encodes a novel proteinase inhibitor I from a tobacco genetic tumor. Plant Cell Physiol. 1993 Jan;34(1):137–142. [PubMed] [Google Scholar]
  7. Gillham N. W., Boynton J. E., Hauser C. R. Translational regulation of gene expression in chloroplasts and mitochondria. Annu Rev Genet. 1994;28:71–93. doi: 10.1146/annurev.ge.28.120194.000443. [DOI] [PubMed] [Google Scholar]
  8. Gray J. C., Hird S. M., Dyer T. A. Nucleotide sequence of a wheat chloroplast gene encoding the proteolytic subunit of an ATP-dependent protease. Plant Mol Biol. 1990 Dec;15(6):947–950. doi: 10.1007/BF00039435. [DOI] [PubMed] [Google Scholar]
  9. Hoober J. K., Hughes M. J. Purification and Characterization of a Membrane-Bound Protease from Chlamydomonas reinhardtii. Plant Physiol. 1992 Jul;99(3):932–937. doi: 10.1104/pp.99.3.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kuwabara T. Characterization of a prolyl endopeptidase from spinach thylakoids. FEBS Lett. 1992 Mar 30;300(2):127–130. doi: 10.1016/0014-5793(92)80179-k. [DOI] [PubMed] [Google Scholar]
  11. Laing W. A., Christeller J. T. A model for the kinetics of activation and catalysis of ribulose 1,5-bisphosphate carboxylase. Biochem J. 1976 Dec 1;159(3):563–570. doi: 10.1042/bj1590563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Linthorst H. J., Brederode F. T., van der Does C., Bol J. F. Tobacco proteinase inhibitor I genes are locally, but not systemically induced by stress. Plant Mol Biol. 1993 Mar;21(6):985–992. doi: 10.1007/BF00023597. [DOI] [PubMed] [Google Scholar]
  13. Liu X. Q., Jagendorf A. T. Neutral peptidases in the stroma of pea chloroplasts. Plant Physiol. 1986 Jun;81(2):603–608. doi: 10.1104/pp.81.2.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Margossian L. J., Federman A. D., Giovannoni J. J., Fischer R. L. Ethylene-regulated expression of a tomato fruit ripening gene encoding a proteinase inhibitor I with a glutamic residue at the reactive site. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8012–8016. doi: 10.1073/pnas.85.21.8012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moore T., Keegstra K. Characterization of a cDNA clone encoding a chloroplast-targeted Clp homologue. Plant Mol Biol. 1993 Feb;21(3):525–537. doi: 10.1007/BF00028809. [DOI] [PubMed] [Google Scholar]
  16. Musgrove J. E., Elderfield P. D., Robinson C. Endopeptidases in the stroma and thylakoids of pea chloroplasts. Plant Physiol. 1989 Aug;90(4):1616–1621. doi: 10.1104/pp.90.4.1616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ozaki M., Fujinami K., Tanaka K., Amemiya Y., Sato T., Ogura N., Nakagawa H. Purification and initial characterization of the proteasome from the higher plant Spinacia oleracea. J Biol Chem. 1992 Oct 25;267(30):21678–21684. [PubMed] [Google Scholar]
  18. Rawlings N. D., Barrett A. J. Families of serine peptidases. Methods Enzymol. 1994;244:19–61. doi: 10.1016/0076-6879(94)44004-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Robinson C., Ellis R. J. Transport of proteins into chloroplasts. Partial purification of a chloroplast protease involved in the processing of important precursor polypeptides. Eur J Biochem. 1984 Jul 16;142(2):337–342. doi: 10.1111/j.1432-1033.1984.tb08291.x. [DOI] [PubMed] [Google Scholar]
  20. Roughan G. A semi-preparative enzymic synthesis of malonyl-CoA from [14C]acetate and 14CO2: labelling in the 1, 2 or 3 position. Biochem J. 1994 Jun 1;300(Pt 2):355–358. doi: 10.1042/bj3000355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  22. Shanklin J., DeWitt N. D., Flanagan J. M. The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpA: an archetypal two-component ATP-dependent protease. Plant Cell. 1995 Oct;7(10):1713–1722. doi: 10.1105/tpc.7.10.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thayer S. S., Choe H. T., Rausser S., Huffaker R. C. Characterization and subcellular localization of aminopeptidases in senescing barley leaves. Plant Physiol. 1988;87:894–897. doi: 10.1104/pp.87.4.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ting I. P. Malic dehydrogenases in corn root tips. Arch Biochem Biophys. 1968 Jul;126(1):1–7. doi: 10.1016/0003-9861(68)90552-3. [DOI] [PubMed] [Google Scholar]
  25. Waters S. P., Noble E. R., Dalling M. J. Intracellular Localization of Peptide Hydrolases in Wheat (Triticum aestivum L.) Leaves. Plant Physiol. 1982 Mar;69(3):575–579. doi: 10.1104/pp.69.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weglöhner W., Subramanian A. R. Nucleotide sequence of a region of maize chloroplast DNA containing the 3' end of clpP, exon 1 of rps12 and rpl20 and their cotranscription. Plant Mol Biol. 1992 Jan;18(2):415–418. doi: 10.1007/BF00034970. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES