Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jun;114(2):737–746. doi: 10.1104/pp.114.2.737

Dissecting the Diphenylene Iodonium-Sensitive NAD(P)H:Quinone Oxidoreductase of Zucchini Plasma Membrane.

P Trost 1, S Foscarini 1, V Preger 1, P Bonora 1, L Vitale 1, P Pupillo 1
PMCID: PMC158359  PMID: 12223742

Abstract

Quinone oxidoreductase activities dependent on pyridine nucleotides are associated with the plasma membrane (PM) in zucchini (Cucurbita pepo L.) hypocotyls. In the presence of NADPH, lipophilic ubiquinone homologs with up to three isoprenoid units were reduced by intact PM vesicles with a Km of 2 to 7 [mu]M. Affinities for both NADPH and NADH were similar (Km of 62 and 51 [mu]M, respectively). Two NAD(P)H:quinone oxidoreductase forms were identified. The first, labeled as peak I in gel-filtration experiments, behaves as an intrinsic membrane complex of about 300 kD, it slightly prefers NADH over NADPH, it is markedly sensitive to the inhibitor diphenylene iodonium, and it is active with lipophilic quinones. The second form (peak II) is an NADPH-preferring oxidoreductase of about 90 kD, weakly bound to the PM. Peak II is diphenylene iodonium-insensitive and resembles, in many properties, the soluble NAD(P)H:quinone oxidoreductase that is also present in the same tissue. Following purification of peak I, however, the latter gave rise to a quinone oxidoreductase of the soluble type (peak II), based on substrate and inhibitor specificities and chromatographic and electrophoretic evidence. It is proposed that a redox protein of the same class as the soluble NAD(P)H:quinone oxidoreductase (F. Sparla, G. Tedeschi, and P. Trost [1996] Plant Physiol. 112:249-258) is a component of the diphenylene iodonium-sensitive PM complex capable of reducing lipophilic quinones.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asard H., Venken M., Caubergs R., Reijnders W., Oltmann F. L., De Greef J. A. b-Type Cytochromes in Higher Plant Plasma Membranes. Plant Physiol. 1989 Jul;90(3):1077–1083. doi: 10.1104/pp.90.3.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
  3. Beyer R. E., Segura-Aguilar J., Di Bernardo S., Cavazzoni M., Fato R., Fiorentini D., Galli M. C., Setti M., Landi L., Lenaz G. The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2528–2532. doi: 10.1073/pnas.93.6.2528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braun B. S., Benbow U., Lloyd-Williams P., Bruce J. M., Dutton P. L. Determination of partition coefficients of quinones by high-performance liquid chromatography. Methods Enzymol. 1986;125:119–129. doi: 10.1016/s0076-6879(86)25011-9. [DOI] [PubMed] [Google Scholar]
  5. Brock B. J., Gold M. H. 1,4-Benzoquinone reductase from basidiomycete Phanerochaete chrysosporium: spectral and kinetic analysis. Arch Biochem Biophys. 1996 Jul 1;331(1):31–40. doi: 10.1006/abbi.1996.0279. [DOI] [PubMed] [Google Scholar]
  6. Brock B. J., Rieble S., Gold M. H. Purification and Characterization of a 1,4-Benzoquinone Reductase from the Basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol. 1995 Aug;61(8):3076–3081. doi: 10.1128/aem.61.8.3076-3081.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Córdoba M. C., Serrano A., Córdoba F., González-Reyes J. A., Navas P., Villalba J. M. Topography of the 27- and 31-kDa electron transport proteins in the onion root plasma membrane. Biochem Biophys Res Commun. 1995 Nov 22;216(3):1054–1059. doi: 10.1006/bbrc.1995.2727. [DOI] [PubMed] [Google Scholar]
  8. Degli Esposti M., Bertoli E., Parenti-Castelli G., Fato R., Mascarello S., Lenaz G. Incorporation of ubiquinone homologs into lipid vesicles and mitochondrial membranes. Arch Biochem Biophys. 1981 Aug;210(1):21–32. doi: 10.1016/0003-9861(81)90159-4. [DOI] [PubMed] [Google Scholar]
  9. Döring O., Lüthje S. Molecular components and biochemistry of electron transport in plant plasma membranes (review). Mol Membr Biol. 1996 Jul-Sep;13(3):127–142. doi: 10.3109/09687689609160589. [DOI] [PubMed] [Google Scholar]
  10. Groom Q. J., Torres M. A., Fordham-Skelton A. P., Hammond-Kosack K. E., Robinson N. J., Jones J. D. rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J. 1996 Sep;10(3):515–522. doi: 10.1046/j.1365-313x.1996.10030515.x. [DOI] [PubMed] [Google Scholar]
  11. Heineke D., Riens B., Grosse H., Hoferichter P., Peter U., Flügge U. I., Heldt H. W. Redox Transfer across the Inner Chloroplast Envelope Membrane. Plant Physiol. 1991 Apr;95(4):1131–1137. doi: 10.1104/pp.95.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kalén A., Norling B., Appelkvist E. L., Dallner G. Ubiquinone biosynthesis by the microsomal fraction from rat liver. Biochim Biophys Acta. 1987 Oct 8;926(1):70–78. doi: 10.1016/0304-4165(87)90183-8. [DOI] [PubMed] [Google Scholar]
  13. Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
  14. Luethy M. H., Hayes M. K., Elthon T. E. Partial Purification and Characterization of Three NAD(P)H Dehydrogenases from Beta vulgaris Mitochondria. Plant Physiol. 1991 Dec;97(4):1317–1322. doi: 10.1104/pp.97.4.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Luster D. G., Buckhout T. J. Purification and Identification of a Plasma Membrane Associated Electron Transport Protein from Maize (Zea mays L.) Roots. Plant Physiol. 1989 Nov;91(3):1014–1019. doi: 10.1104/pp.91.3.1014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murphy T. M., Auh C. K. The Superoxide Synthases of Plasma Membrane Preparations from Cultured Rose Cells. Plant Physiol. 1996 Feb;110(2):621–629. doi: 10.1104/pp.110.2.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Oettmeier W., Masson K., Soll M. The acridones, new inhibitors of mitochondrial NADH: ubiquinone oxidoreductase (complex I). Biochim Biophys Acta. 1992 Mar 13;1099(3):262–266. doi: 10.1016/0005-2728(92)90036-2. [DOI] [PubMed] [Google Scholar]
  18. Pupillo P., Valenti V., De Luca L., Hertel R. Kinetic characterization of reduced pyridine nucleotide dehydrogenases (duroquinone-dependent) in cucurbita microsomes. Plant Physiol. 1986 Feb;80(2):384–389. doi: 10.1104/pp.80.2.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ray P. M. Auxin-binding Sites of Maize Coleoptiles Are Localized on Membranes of the Endoplasmic Reticulum. Plant Physiol. 1977 Apr;59(4):594–599. doi: 10.1104/pp.59.4.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rescigno A., Sollai F., Masala S., Porcu M. C., Sanjust E., Rinaldi A. C., Curreli N., Grifi D., Rinaldi A. Purification and characterization of an NAD(P)H:quinone oxidoreductase from Glycine max seedlings. Prep Biochem. 1995 Feb-May;25(1-2):57–67. doi: 10.1080/10826069508010107. [DOI] [PubMed] [Google Scholar]
  21. Rugolo M., Zannoni D. Oxidation of External NAD(P)H by Jerusalem Artichoke (Helianthus tuberosus) Mitochondria : A Kinetic and Inhibitor Study. Plant Physiol. 1992 Jul;99(3):1037–1043. doi: 10.1104/pp.99.3.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Serrano A., Cordoba F., Gonzalez-Reyes J. A., Navas P., Villalba J. M. Purification and Characterization of Two Distinct NAD(P)H Dehydrogenases from Onion (Allium cepa L.) Root Plasma Membrane. Plant Physiol. 1994 Sep;106(1):87–96. doi: 10.1104/pp.106.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sparla F., Tedeschi G., Trost P. NAD(P)H:(Quinone-Acceptor) Oxidoreductase of Tobacco Leaves Is a Flavin Mononucleotide-Containing Flavoenzyme. Plant Physiol. 1996 Sep;112(1):249–258. doi: 10.1104/pp.112.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Trost P., Bonora P., Scagliarini S., Pupillo P. Purification and properties of NAD(P)H: (quinone-acceptor) oxidoreductase of sugarbeet cells. Eur J Biochem. 1995 Dec 1;234(2):452–458. doi: 10.1111/j.1432-1033.1995.452_b.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES