Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jul;114(3):779–788. doi: 10.1104/pp.114.3.779

Genetic and developmental control of nuclear accumulation of COP1, a repressor of photomorphogenesis in Arabidopsis.

A G von Arnim 1, M T Osterlund 1, S F Kwok 1, X W Deng 1
PMCID: PMC158364  PMID: 9232869

Abstract

Using a beta-glucuronidase (GUS) reporter-COP1 fusion transgene, it was shown previously that Arabidopsis COP1 acts within the nucleus as a repressor of seedling photomorphogenic development and that high inactivation of COP1 was accompanied by a reduction of COP1 nuclear abundance (A.G. von Arnim, X.-W. Deng [1994] Cell 79: 1035-1045). Here we report that the GUS-COP1 fusion transgene can completely rescue the defect of cop1 mutations and thus is fully functional during seedling development. The kinetics of GUS-COP1 relocalization in a cop1 null mutant background during dark/light transitions imply that the regulation of the functional nuclear COP1 level plays a role in stably maintaining a committed seedling's developmental fate rather than in causing such a commitment. Analysis of GUS-COP1 cellular localization in mutant hypocotyls of all pleiotropic COP/DET/FUS loci revealed that nuclear localization of GUS-COP1 was diminished under both dark and light conditions in all mutants tested, whereas nuclear localization was not affected in the less pleiotropic cop4 mutant. Using both the brassinosteroid-deficient mutant det2 and brassinosteroid treatment of wild-type seedlings, we have demonstrated that brassinosteroid does not control the hypocotyl cell elongation through regulation nuclear localization of COP1. The growth regulator cytokinin, which also dramatically reduced hypocotyl cell elongation in the absence of light, did not prevent GUS-COP1 nuclear localization in dark-grown seedlings. Our results suggest that all of the previously characterized pleiotropic COP/DET/FUS loci are required for the proper nuclear localization of the COP1 protein in the dark, whereas the less pleiotropic COP/DET loci or plant regulators tested are likely to act either downstream of COP1 or by independent pathways.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamska I. Regulation of Early Light-Inducible Protein Gene Expression by Blue and Red Light in Etiolated Seedlings Involves Nuclear and Plastid Factors. Plant Physiol. 1995 Apr;107(4):1167–1175. doi: 10.1104/pp.107.4.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowler C., Chua N. H. Emerging themes of plant signal transduction. Plant Cell. 1994 Nov;6(11):1529–1541. doi: 10.1105/tpc.6.11.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chamovitz D. A., Wei N., Osterlund M. T., von Arnim A. G., Staub J. M., Matsui M., Deng X. W. The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch. Cell. 1996 Jul 12;86(1):115–121. doi: 10.1016/s0092-8674(00)80082-3. [DOI] [PubMed] [Google Scholar]
  4. Chory J., Nagpal P., Peto C. A. Phenotypic and Genetic Analysis of det2, a New Mutant That Affects Light-Regulated Seedling Development in Arabidopsis. Plant Cell. 1991 May;3(5):445–459. doi: 10.1105/tpc.3.5.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chory J., Peto C., Feinbaum R., Pratt L., Ausubel F. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell. 1989 Sep 8;58(5):991–999. doi: 10.1016/0092-8674(89)90950-1. [DOI] [PubMed] [Google Scholar]
  6. Chory J., Reinecke D., Sim S., Washburn T., Brenner M. A Role for Cytokinins in De-Etiolation in Arabidopsis (det Mutants Have an Altered Response to Cytokinins). Plant Physiol. 1994 Feb;104(2):339–347. doi: 10.1104/pp.104.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deng X. W., Caspar T., Quail P. H. cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev. 1991 Jul;5(7):1172–1182. doi: 10.1101/gad.5.7.1172. [DOI] [PubMed] [Google Scholar]
  8. Deng X. W., Matsui M., Wei N., Wagner D., Chu A. M., Feldmann K. A., Quail P. H. COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain. Cell. 1992 Nov 27;71(5):791–801. doi: 10.1016/0092-8674(92)90555-q. [DOI] [PubMed] [Google Scholar]
  9. Hou Y., Von Arnim A. G., Deng X. W. A New Class of Arabidopsis Constitutive Photomorphogenic Genes Involved in Regulating Cotyledon Development. Plant Cell. 1993 Mar;5(3):329–339. doi: 10.1105/tpc.5.3.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kim B. C., Soh M. C., Kang B. J., Furuya M., Nam H. G. Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2. Plant J. 1996 Apr;9(4):441–456. doi: 10.1046/j.1365-313x.1996.09040441.x. [DOI] [PubMed] [Google Scholar]
  11. Kwok S. F., Piekos B., Misera S., Deng X. W. A complement of ten essential and pleiotropic arabidopsis COP/DET/FUS genes is necessary for repression of photomorphogenesis in darkness. Plant Physiol. 1996 Mar;110(3):731–742. doi: 10.1104/pp.110.3.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lehman A., Black R., Ecker J. R. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell. 1996 Apr 19;85(2):183–194. doi: 10.1016/s0092-8674(00)81095-8. [DOI] [PubMed] [Google Scholar]
  13. Li J., Nagpal P., Vitart V., McMorris T. C., Chory J. A role for brassinosteroids in light-dependent development of Arabidopsis. Science. 1996 Apr 19;272(5260):398–401. doi: 10.1126/science.272.5260.398. [DOI] [PubMed] [Google Scholar]
  14. McNellis T. W., Deng X. W. Light control of seedling morphogenetic pattern. Plant Cell. 1995 Nov;7(11):1749–1761. doi: 10.1105/tpc.7.11.1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McNellis T. W., Torii K. U., Deng X. W. Expression of an N-terminal fragment of COP1 confers a dominant-negative effect on light-regulated seedling development in Arabidopsis. Plant Cell. 1996 Sep;8(9):1491–1503. doi: 10.1105/tpc.8.9.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McNellis T. W., von Arnim A. G., Araki T., Komeda Y., Miséra S., Deng X. W. Genetic and molecular analysis of an allelic series of cop1 mutants suggests functional roles for the multiple protein domains. Plant Cell. 1994 Apr;6(4):487–500. doi: 10.1105/tpc.6.4.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McNellis T. W., von Arnim A. G., Deng X. W. Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light-inactivable repressor of photomorphogenesis. Plant Cell. 1994 Oct;6(10):1391–1400. doi: 10.1105/tpc.6.10.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Millar A. J., McGrath R. B., Chua N. H. Phytochrome phototransduction pathways. Annu Rev Genet. 1994;28:325–349. doi: 10.1146/annurev.ge.28.120194.001545. [DOI] [PubMed] [Google Scholar]
  19. Miséra S., Müller A. J., Weiland-Heidecker U., Jürgens G. The FUSCA genes of Arabidopsis: negative regulators of light responses. Mol Gen Genet. 1994 Aug 2;244(3):242–252. doi: 10.1007/BF00285451. [DOI] [PubMed] [Google Scholar]
  20. Pepper A., Delaney T., Washburn T., Poole D., Chory J. DET1, a negative regulator of light-mediated development and gene expression in arabidopsis, encodes a novel nuclear-localized protein. Cell. 1994 Jul 15;78(1):109–116. doi: 10.1016/0092-8674(94)90577-0. [DOI] [PubMed] [Google Scholar]
  21. Quail P. H., Boylan M. T., Parks B. M., Short T. W., Xu Y., Wagner D. Phytochromes: photosensory perception and signal transduction. Science. 1995 May 5;268(5211):675–680. doi: 10.1126/science.7732376. [DOI] [PubMed] [Google Scholar]
  22. Staub J. M., Wei N., Deng X. W. Evidence for FUS6 as a component of the nuclear-localized COP9 complex in Arabidopsis. Plant Cell. 1996 Nov;8(11):2047–2056. doi: 10.1105/tpc.8.11.2047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Su W., Howell S. H. The Effects of Cytokinin and Light on Hypocotyl Elongation in Arabidopsis Seedlings Are Independent and Additive. Plant Physiol. 1995 Aug;108(4):1423–1430. doi: 10.1104/pp.108.4.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Szekeres M., Németh K., Koncz-Kálmán Z., Mathur J., Kauschmann A., Altmann T., Rédei G. P., Nagy F., Schell J., Koncz C. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell. 1996 Apr 19;85(2):171–182. doi: 10.1016/s0092-8674(00)81094-6. [DOI] [PubMed] [Google Scholar]
  25. Takahashi T., Gasch A., Nishizawa N., Chua N. H. The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes Dev. 1995 Jan 1;9(1):97–107. doi: 10.1101/gad.9.1.97. [DOI] [PubMed] [Google Scholar]
  26. Von Arnim Albrecht, Deng Xing-Wang. LIGHT CONTROL OF SEEDLING DEVELOPMENT. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):215–243. doi: 10.1146/annurev.arplant.47.1.215. [DOI] [PubMed] [Google Scholar]
  27. Weatherwax S. C., Ong M. S., Degenhardt J., Bray E. A., Tobin E. M. The interaction of light and abscisic acid in the regulation of plant gene expression. Plant Physiol. 1996 Jun;111(2):363–370. doi: 10.1104/pp.111.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wei N., Chamovitz D. A., Deng X. W. Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell. 1994 Jul 15;78(1):117–124. doi: 10.1016/0092-8674(94)90578-9. [DOI] [PubMed] [Google Scholar]
  29. Wei N., Deng X. W. COP9: a new genetic locus involved in light-regulated development and gene expression in arabidopsis. Plant Cell. 1992 Dec;4(12):1507–1518. doi: 10.1105/tpc.4.12.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wei N., Kwok S. F., von Arnim A. G., Lee A., McNellis T. W., Piekos B., Deng X. W. Arabidopsis COP8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness. Plant Cell. 1994 May;6(5):629–643. doi: 10.1105/tpc.6.5.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. von Arnim A. G., Deng X. W. Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell. 1994 Dec 16;79(6):1035–1045. doi: 10.1016/0092-8674(94)90034-5. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES