Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jul;114(3):789–800. doi: 10.1104/pp.114.3.789

Cytoplasmic free Ca2+ in Arabidopsis roots changes in response to touch but not gravity.

V Legué 1, E Blancaflor 1, C Wymer 1, G Perbal 1, D Fantin 1, S Gilroy 1
PMCID: PMC158365  PMID: 9232870

Abstract

Changes in cytoplasmic Ca2+ concentration ([Ca2+]i) have been proposed to be involved in signal transduction pathways in response to a number of stimuli, including gravity and touch. The current hypothesis proposes that the development of gravitropic bending is correlated with a redistribution of [Ca2+]i in gravistimulated roots. However, no study has demonstrated clearly the development of an asymmetry of this ion during root curvature. We tested this hypothesis by quantifying the temporal and spatial changes in [Ca2+]i in roots of living Arabidopsis seedlings using ultraviolet-confocal Ca(2+)-ratio imaging and vertical stage fluorescence microscopy to visualize root [Ca2+]i. We observed no changes in [Ca2+]i associated with the graviresponse whether monitored at the whole organ level or in individual cells in different regions of the root for up to 12 h after gravistimulation. However, touch stimulation led to transient increases in [Ca2+]i in all cell types monitored. The increases induced in the cap cells were larger and longer-lived than in cells in the meristematic or elongation zone. One millimolar La3+ and 100 microM verapamil did not prevent these responses, whereas 5 mM EGTA or 50 microM ruthenium red inhibited the transients, indicating an intracellular origin of the Ca2+ increase. These results suggest that although touch responses of roots may be mediated through a Ca(2+)-dependent pathway, the gravitropic response is not associated with detectable changes in [Ca2+]i.

Full Text

The Full Text of this article is available as a PDF (4.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Campbell A. K., Trewavas A. J., Knight M. R. Calcium imaging shows differential sensitivity to cooling and communication in luminous transgenic plants. Cell Calcium. 1996 Mar;19(3):211–218. doi: 10.1016/s0143-4160(96)90022-6. [DOI] [PubMed] [Google Scholar]
  2. Carlsson L., Abrahamsson T., Almgren O. Release of noradrenaline in myocardial ischemia--importance of local inactivation by neuronal and extraneuronal mechanisms. J Cardiovasc Pharmacol. 1986 May-Jun;8(3):545–553. doi: 10.1097/00005344-198605000-00017. [DOI] [PubMed] [Google Scholar]
  3. Chandra S., Chabot J. F., Morrison G. H., Leopold A. C. Localization of calcium in amyloplasts of root-cap cells using ion microscopy. Science. 1982 Jun 11;216(4551):1221–1223. doi: 10.1126/science.216.4551.1221. [DOI] [PubMed] [Google Scholar]
  4. Dauwalder M., Roux S. J., Hardison L. Distribution of calmodulin in pea seedlings: immunocytochemical localization in plumules and root apices. Planta. 1986;168:461–470. [PubMed] [Google Scholar]
  5. Dauwalder M., Roux S. J., Rabenberg L. K. Cellular and subcellular localization of calcium in gravistimulated corn roots. Protoplasma. 1985;129:137–148. doi: 10.1007/BF01279911. [DOI] [PubMed] [Google Scholar]
  6. Denton R. M., McCormack J. G., Edgell N. J. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J. 1980 Jul 15;190(1):107–117. doi: 10.1042/bj1900107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ding J. P., Pickard B. G. Mechanosensory calcium-selective cation channels in epidermal cells. Plant J. 1993 Jan;3(1):83–110. [PubMed] [Google Scholar]
  8. Drobak B. K. Plant Phosphoinositides and Intracellular Signaling. Plant Physiol. 1993 Jul;102(3):705–709. doi: 10.1104/pp.102.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans M. L., Moore R., Hasenstein K. H. How roots respond to gravity. Sci Am. 1986 Dec;255(6):112–119. doi: 10.1038/scientificamerican1286-112. [DOI] [PubMed] [Google Scholar]
  10. Gehring C. A., Williams D. A., Cody S. H., Parish R. W. Phototropism and geotropism in maize coleoptiles are spatially correlated with increases in cytosolic free calcium. Nature. 1990 Jun 7;345:528–530. doi: 10.1038/345528a0. [DOI] [PubMed] [Google Scholar]
  11. Gilroy S., Read N. D., Trewavas A. J. Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature. 1990 Aug 23;346(6286):769–771. doi: 10.1038/346769a0. [DOI] [PubMed] [Google Scholar]
  12. Haley A., Russell A. J., Wood N., Allan A. C., Knight M., Campbell A. K., Trewavas A. J. Effects of mechanical signaling on plant cell cytosolic calcium. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4124–4128. doi: 10.1073/pnas.92.10.4124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ishikawa H., Evans M. L. Induction of curvature in maize roots by calcium or by thigmostimulation: role of the postmitotic isodiametric growth zone. Plant Physiol. 1992;100:762–768. doi: 10.1104/pp.100.2.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ishikawa H., Evans M. L. The role of the distal elongation zone in the response of maize roots to auxin and gravity. Plant Physiol. 1993 Aug;102(4):1203–1210. doi: 10.1104/pp.102.4.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jaffe L. F. Classes and mechanisms of calcium waves. Cell Calcium. 1993 Nov;14(10):736–745. doi: 10.1016/0143-4160(93)90099-r. [DOI] [PubMed] [Google Scholar]
  16. Kiss H. G., Evans M. L., Johnson J. D. Cytoplasmic calcium levels in protoplasts from the cap and elongation zone of maize roots. Protoplasma. 1991;163:181–188. doi: 10.1007/BF01323342. [DOI] [PubMed] [Google Scholar]
  17. Knight M. R., Campbell A. K., Smith S. M., Trewavas A. J. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature. 1991 Aug 8;352(6335):524–526. doi: 10.1038/352524a0. [DOI] [PubMed] [Google Scholar]
  18. Knight M. R., Knight H., Watkins N. J. Calcium and the generation of plant form. Philos Trans R Soc Lond B Biol Sci. 1995 Oct 30;350(1331):83–86. doi: 10.1098/rstb.1995.0141. [DOI] [PubMed] [Google Scholar]
  19. Knight M. R., Smith S. M., Trewavas A. J. Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4967–4971. doi: 10.1073/pnas.89.11.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee J. S., Mulkey T. J., Evans M. L. Reversible loss of gravitropic sensitivity in maize roots after tip application of calcium chelators. Science. 1983 Jun 24;220(4604):1375–1376. doi: 10.1126/science.220.4604.1375. [DOI] [PubMed] [Google Scholar]
  21. Ling V., Perera I., Zielinski R. E. Primary structures of Arabidopsis calmodulin isoforms deduced from the sequences of cDNA clones. Plant Physiol. 1991 Aug;96(4):1196–1202. doi: 10.1104/pp.96.4.1196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lu Y. T., Hidaka H., Feldman L. J. Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism. Planta. 1996;199(1):18–24. doi: 10.1007/BF00196876. [DOI] [PubMed] [Google Scholar]
  23. Perera I. Y., Zielinski R. E. Structure and expression of the Arabidopsis CaM-3 calmodulin gene. Plant Mol Biol. 1992 Jul;19(4):649–664. doi: 10.1007/BF00026791. [DOI] [PubMed] [Google Scholar]
  24. Polisensky D. H., Braam J. Cold-shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels. Plant Physiol. 1996 Aug;111(4):1271–1279. doi: 10.1104/pp.111.4.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Poovaiah B. W., McFadden J. J., Reddy A. S. The role of calcium ions in gravity signal perception and transduction. Physiol Plant. 1987;71:401–407. doi: 10.1111/j.1399-3054.1987.tb04363.x. [DOI] [PubMed] [Google Scholar]
  26. Sack F. D. Plant gravity sensing. Int Rev Cytol. 1991;127:193–252. doi: 10.1016/s0074-7696(08)60695-6. [DOI] [PubMed] [Google Scholar]
  27. Sedbrook J. C., Kronebusch P. J., Borisy G. G., Trewavas A. J., Masson P. H. Transgenic AEQUORIN reveals organ-specific cytosolic Ca2+ responses to anoxia and Arabidopsis thaliana seedlings. Plant Physiol. 1996 May;111(1):243–257. doi: 10.1104/pp.111.1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sinclair W., Oliver I., Maher P., Trewavas A. The role of calmodulin in the gravitropic response of the Arabidopsis thaliana agr-3 mutant. Planta. 1996;199(3):343–351. doi: 10.1007/BF00195725. [DOI] [PubMed] [Google Scholar]
  29. Sistrunk M. L., Antosiewicz D. M., Purugganan M. M., Braam J. Arabidopsis TCH3 encodes a novel Ca2+ binding protein and shows environmentally induced and tissue-specific regulation. Plant Cell. 1994 Nov;6(11):1553–1565. doi: 10.1105/tpc.6.11.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stinemetz C. L., Hasenstein K. H., Young L. M., Evans M. L. Effect of calmodulin antagonists on the growth and graviresponsiveness of primary roots of maize. Plant Growth Regul. 1992 Nov;11(4):419–427. doi: 10.1007/BF00130651. [DOI] [PubMed] [Google Scholar]
  31. Stinemetz C. L., Kuzmanoff K. M., Evans M. L., Jarrett H. W. Correlation between calmodulin activity and gravitropic sensitivity in primary roots of maize. Plant Physiol. 1987;84:1337–1342. doi: 10.1104/pp.84.4.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Takahashi H., Scott T. K., Suge H. Stimulation of root elongation and curvature by calcium. Plant Physiol. 1992;98:246–252. doi: 10.1104/pp.98.1.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Trewavas A., Knight M. Mechanical signalling, calcium and plant form. Plant Mol Biol. 1994 Dec;26(5):1329–1341. doi: 10.1007/BF00016478. [DOI] [PubMed] [Google Scholar]
  34. Xu W., Purugganan M. M., Polisensky D. H., Antosiewicz D. M., Fry S. C., Braam J. Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell. 1995 Oct;7(10):1555–1567. doi: 10.1105/tpc.7.10.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES