Abstract
In this study we examined the processes by which malate and pyruvate are taken up across the leucoplast envelope for fatty acid synthesis in developing castor (Ricinus communis L.) seed endosperm. Malate was taken up by isolated leucoplasts with a concentration dependence indicative of protein-mediated transport. The maximum rate of malate uptake was 704 [plus or minus] 41 nmol mg-1 protein h-1 and the Km was 0.62 [plus or minus] 0.08 mM. In contrast, the rate of pyruvate uptake increased linearly with respect to the substrate concentration and was 5-fold less than malate at a concentration of 5 mM. Malate uptake was inhibited by inorganic phosphate (Pi), glutamate, malonate, succinate, 2-oxoglutarate, and n-butyl malonate, an inhibitor of the mitochondrial malate/Pi-exchange translocator. Back-exchange experiments confirmed that malate was taken up by leucoplasts in counterexchange for Pi. The exchange stoichiometry was 1:1. The rate of malate-dependent fatty acid synthesis by isolated leucoplasts was 3-fold greater than from pyruvate at a concentration of 5 mM and was inhibited by n-butyl malonate. It is proposed that leucoplasts from developing castor endosperm contain a malate/Pi translocator that imports malate for fatty acid synthesis. This type of dicarboxylate transport activity has not been identified previously in plastids.
Full Text
The Full Text of this article is available as a PDF (637.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Batz O., Scheibe R., Neuhaus H. E. Transport Processes and Corresponding Changes in Metabolite Levels in Relation to Starch Synthesis in Barley (Hordeum vulgare L.) Etioplasts. Plant Physiol. 1992 Sep;100(1):184–190. doi: 10.1104/pp.100.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borchert S., Harborth J., Schunemann D., Hoferichter P., Heldt H. W. Studies of the Enzymic Capacities and Transport Properties of Pea Root Plastids. Plant Physiol. 1993 Jan;101(1):303–312. doi: 10.1104/pp.101.1.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brooks S. P. A simple computer program with statistical tests for the analysis of enzyme kinetics. Biotechniques. 1992 Dec;13(6):906–911. [PubMed] [Google Scholar]
- Buser-Suter C., Wiemken A., Matile P. A malic Acid permease in isolated vacuoles of a crassulacean Acid metabolism plant. Plant Physiol. 1982 Feb;69(2):456–459. doi: 10.1104/pp.69.2.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Day D. A., Hatch M. D. Dicarboxylate transport in maize mesophyll chloroplasts. Arch Biochem Biophys. 1981 Oct 15;211(2):738–742. doi: 10.1016/0003-9861(81)90510-5. [DOI] [PubMed] [Google Scholar]
- Heldt H. W., Sauer F. The inner membrane of the chloroplast envelope as the site of specific metabolite transport. Biochim Biophys Acta. 1971 Apr 6;234(1):83–91. doi: 10.1016/0005-2728(71)90133-2. [DOI] [PubMed] [Google Scholar]
- Huber S. C., Edwards G. E. Transport in C4 mesophyll chloroplasts characterization of the pyruvate carrier. Biochim Biophys Acta. 1977 Dec 23;462(3):583–602. doi: 10.1016/0005-2728(77)90103-7. [DOI] [PubMed] [Google Scholar]
- Lehner K., Heldt H. W. Dicarboxylate transport across the inner membrane of the chloroplast envelope. Biochim Biophys Acta. 1978 Mar 13;501(3):531–544. doi: 10.1016/0005-2728(78)90119-6. [DOI] [PubMed] [Google Scholar]
- Mudd J. B., Dezacks R. Synthesis of phosphatidylglycerol by chloroplasts from leaves of Spinacia oleracea L. (spinach). Arch Biochem Biophys. 1981 Jul;209(2):584–591. doi: 10.1016/0003-9861(81)90316-7. [DOI] [PubMed] [Google Scholar]
- Negm F. B., Cornel F. A., Plaxton W. C. Suborganellar Localization and Molecular Characterization of Nonproteolytic Degraded Leukoplast Pyruvate Kinase from Developing Castor Oil Seeds. Plant Physiol. 1995 Dec;109(4):1461–1469. doi: 10.1104/pp.109.4.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmieri F., Prezioso G., Quagliariello E., Klingenberg M. Kinetic study of the dicarboxylate carrier in rat liver mitochondria. Eur J Biochem. 1971 Sep 13;22(1):66–74. doi: 10.1111/j.1432-1033.1971.tb01515.x. [DOI] [PubMed] [Google Scholar]
- Phillips M. L., Williams G. R. Anion transporters in plant mitochondria. Plant Physiol. 1973 Apr;51(4):667–670. doi: 10.1104/pp.51.4.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qi Q., Kleppinger-Sparace K. F., Sparace S. A. The Utilization of Glycolytic Intermediates as Precursors for Fatty Acid Biosynthesis by Pea Root Plastids. Plant Physiol. 1995 Feb;107(2):413–419. doi: 10.1104/pp.107.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson B. H., Chappell J. B. The inhibition of malate, tricarboxylate and oxoglutarate entry into mitochondria by 2-n-butylmalonate. Biochem Biophys Res Commun. 1967 Jul 21;28(2):249–255. doi: 10.1016/0006-291x(67)90437-8. [DOI] [PubMed] [Google Scholar]
- Smith R. G., Gauthier D. A., Dennis D. T., Turpin D. H. Malate- and pyruvate-dependent Fatty Acid synthesis in leucoplasts from developing castor endosperm. Plant Physiol. 1992 Apr;98(4):1233–1238. doi: 10.1104/pp.98.4.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zoglowek C., Krömer S., Heldt H. W. Oxaloacetate and malate transport by plant mitochondria. Plant Physiol. 1988 May;87(1):109–115. doi: 10.1104/pp.87.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
