Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jul;114(3):907–915. doi: 10.1104/pp.114.3.907

Biochemical Characterization and Subcellular Localization of the Red Kidney Bean Purple Acid Phosphatase.

A G Cashikar 1, R Kumaresan 1, N M Rao 1
PMCID: PMC158379  PMID: 12223752

Abstract

Phosphatases are known to play a crucial role in phosphate turnover in plants. However, the exact role of acid phosphatases in plants has been elusive because of insufficient knowledge of their in vivo substrate and subcellular localization. We investigated the biochemical properties of a purple acid phosphatase isolated from red kidney bean (Phaseolus vulgaris) (KBPAP) with respect to its substrate and inhibitor profiles. The kinetic parameters were estimated for five substrates. We used 31P nuclear magnetic resonance to investigate the in vivo substrate of KBPAP. Chemical and enzymological estimation of polyphosphates and ATP, respectively, indicated the absence of polyphosphates and the presence of ATP in trace amounts in the seed extracts. Immunolocalization using antibodies raised against KBPAP was unsuccessful because of the non-specificity of the antiserum toward glycoproteins. Using histoenzymological methods with ATP as a substrate, we could localize KBPAP exclusively in the cell walls of the peripheral two to three rows of cells in the cotyledons. KBPAP activity was not detected in the embryo. In vitro experiments indicated that pectin, a major component of the cell wall, significantly altered the kinetic properties of KBPAP. The substrate profile and localization suggest that KBPAP may have a role in mobilizing organic phosphates in the soil during germination.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cashikar A. G., Rao N. M. Unfolding pathway in red kidney bean acid phosphatase is dependent on ligand binding. J Biol Chem. 1996 Mar 1;271(9):4741–4746. doi: 10.1074/jbc.271.9.4741. [DOI] [PubMed] [Google Scholar]
  2. DeWald D. B., Mason H. S., Mullet J. E. The soybean vegetative storage proteins VSP alpha and VSP beta are acid phosphatases active on polyphosphates. J Biol Chem. 1992 Aug 5;267(22):15958–15964. [PubMed] [Google Scholar]
  3. Duff S. M., Lefebvre D. D., Plaxton W. C. Purification and Characterization of a Phosphoenolpyruvate Phosphatase from Brassica nigra Suspension Cells. Plant Physiol. 1989 Jun;90(2):734–741. doi: 10.1104/pp.90.2.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Duff S. M., Plaxton W. C., Lefebvre D. D. Phosphate-starvation response in plant cells: de novo synthesis and degradation of acid phosphatases. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9538–9542. doi: 10.1073/pnas.88.21.9538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ferté N., Moustacas A. M., Nari J., Teissere M., Borel M., Thiebart I., Noat G. Characterization and kinetic properties of a soya-bean cell-wall phosphatase. Eur J Biochem. 1993 Jan 15;211(1-2):297–304. doi: 10.1111/j.1432-1033.1993.tb19898.x. [DOI] [PubMed] [Google Scholar]
  6. Gellatly K. S., Moorhead GBG., Duff SMG., Lefebvre D. D., Plaxton W. C. Purification and Characterization of a Potato Tuber Acid Phosphatase Having Significant Phosphotyrosine Phosphatase Activity. Plant Physiol. 1994 Sep;106(1):223–232. doi: 10.1104/pp.106.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibson D. M., Ullah A. H. Purification and characterization of phytase from cotyledons of germinating soybean seeds. Arch Biochem Biophys. 1988 Feb 1;260(2):503–513. doi: 10.1016/0003-9861(88)90475-4. [DOI] [PubMed] [Google Scholar]
  8. Harold F. M. Inorganic polyphosphates in biology: structure, metabolism, and function. Bacteriol Rev. 1966 Dec;30(4):772–794. doi: 10.1128/br.30.4.772-794.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Klabunde T., Stahl B., Suerbaum H., Hahner S., Karas M., Hillenkamp F., Krebs B., Witzel H. The amino acid sequence of the red kidney bean Fe(III)-Zn(II) purple acid phosphatase. Determination of the amino acid sequence by a combination of matrix-assisted laser desorption/ionization mass spectrometry and automated Edman sequencing. Eur J Biochem. 1994 Dec 1;226(2):369–375. doi: 10.1111/j.1432-1033.1994.tb20061.x. [DOI] [PubMed] [Google Scholar]
  10. Klabunde T., Sträter N., Krebs B., Witzel H. Structural relationship between the mammalian Fe(III)-Fe(II) and the Fe(III)-Zn(II) plant purple acid phosphatases. FEBS Lett. 1995 Jun 19;367(1):56–60. doi: 10.1016/0014-5793(95)00536-i. [DOI] [PubMed] [Google Scholar]
  11. Novikoff A. B. Their phosphatase controversy: Love's labours lost. J Histochem Cytochem. 1970 Dec;18(12):916–917. doi: 10.1177/18.12.916. [DOI] [PubMed] [Google Scholar]
  12. Phillips R., Eisenberg P., George P., Rutman R. J. Thermodynamic data for the secondary phosphate ionizations of adenosine, guanosine, inosine, cytidine, and uridine nucleotides and triphosphate. J Biol Chem. 1965 Nov;240(11):4393–4397. [PubMed] [Google Scholar]
  13. Ramirez-Soto D., Poretz R. D. The (1----3)-linked alpha-L-fucosyl group of the N-glycans of the Wistaria floribunda lectins is recognized by a rabbit anti-serum. Carbohydr Res. 1991 Jun 25;213:27–36. doi: 10.1016/s0008-6215(00)90595-0. [DOI] [PubMed] [Google Scholar]
  14. Randall D. D., Tolbert N. E. 3-Phosphoglycerate phosphatase in plants. I. Isolation and characterization from sugarcane leaves. J Biol Chem. 1971 Sep 10;246(17):5510–5517. [PubMed] [Google Scholar]
  15. Stahl B., Klabunde T., Witzel H., Krebs B., Steup M., Karas M., Hillenkamp F. The oligosaccharides of the Fe(III)-Zn(II) purple acid phosphatase of the red kidney bean. Determination of the structure by a combination of matrix-assisted laser desorption/ionization mass spectrometry and selective enzymic degradation. Eur J Biochem. 1994 Mar 1;220(2):321–330. doi: 10.1111/j.1432-1033.1994.tb18628.x. [DOI] [PubMed] [Google Scholar]
  16. Sträter N., Klabunde T., Tucker P., Witzel H., Krebs B. Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)-Zn(II) active site. Science. 1995 Jun 9;268(5216):1489–1492. doi: 10.1126/science.7770774. [DOI] [PubMed] [Google Scholar]
  17. Suerbaum H., Körner M., Witzel H., Althaus E., Mosel B. D., Müller-Warmuth W. Zn-exchange and Mössbauer studies on the [Fe-Fe] derivatives of the purple acid Fe(III)-Zn(II)-phosphatase from kidney beans. Eur J Biochem. 1993 May 15;214(1):313–321. doi: 10.1111/j.1432-1033.1993.tb17926.x. [DOI] [PubMed] [Google Scholar]
  18. Ullah A. H., Gibson D. M. Purification and characterization of acid phosphatase from cotyledons of germinating soybean seeds. Arch Biochem Biophys. 1988 Feb 1;260(2):514–520. doi: 10.1016/0003-9861(88)90476-6. [DOI] [PubMed] [Google Scholar]
  19. Vincent J. B., Averill B. A. An enzyme with a double identity: purple acid phosphatase and tartrate-resistant acid phosphatase. FASEB J. 1990 Sep;4(12):3009–3014. doi: 10.1096/fasebj.4.12.2394317. [DOI] [PubMed] [Google Scholar]
  20. Vincent J. B., Crowder M. W., Averill B. A. Hydrolysis of phosphate monoesters: a biological problem with multiple chemical solutions. Trends Biochem Sci. 1992 Mar;17(3):105–110. doi: 10.1016/0968-0004(92)90246-6. [DOI] [PubMed] [Google Scholar]
  21. Wood H. G., Clark J. E. Biological aspects of inorganic polyphosphates. Annu Rev Biochem. 1988;57:235–260. doi: 10.1146/annurev.bi.57.070188.001315. [DOI] [PubMed] [Google Scholar]
  22. Yoshida H., Oikawa S., Ikeda M., Reese E. T. A novel acid phosphatase excreted by Penicillium funiculosum that hydrolyzes both phosphodiesters and phosphomonoesters with aryl leaving groups. J Biochem. 1989 May;105(5):794–798. doi: 10.1093/oxfordjournals.jbchem.a122747. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES