Abstract
Soybean (Glycine max L.) plants were subjected to a number of treatments (drought, 10 mM nitrate, 150 mM NaCl, shoot meristem removal, and removal of approximately 50% of the nodules) to test the hypothesis that metabolic responses contribute to the regulation of N2 fixation. Nitrogenase activity was correlated with the activity of nodule sucrose synthase (SS), but not with that of glutamine oxoglutarate amino transferase. Leghemoglobin levels and other enzyme activities were not significantly or consistently affected by the treatments. SS mRNA was greatly reduced in nodules of drought-, salt-, and nitrate-treated plants; however, this was not correlated with changes in soluble carbohydrate, starch, amino acids, or ureides. Leghemoglobin mRNA was only slightly affected by the treatments. The time course of drought stress showed a decline in the SS transcript level by 1 d, but levels of leghemoglobin, glutamine synthetase, and ascorbate peroxidase mRNA were not markedly affected by 4 d. SS activity at 4 d was reduced by 46%. We propose that N2 fixation in soybean nodules is mediated by both the oxygen-diffusion barrier and the potential to metabolize sucrose via SS. The response to environmental perturbation may involve down-regulation of the nodule SS gene.
Full Text
The Full Text of this article is available as a PDF (2.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chatfield M., Dalton D. A. Ascorbate peroxidase from soybean root nodules. Plant Physiol. 1993 Oct;103(2):661–662. doi: 10.1104/pp.103.2.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalton D. A., Post C. J., Langeberg L. Effects of ambient oxygen and of fixed nitrogen on concentrations of glutathione, ascrobate, and associated enzymes in soybean root nodules. Plant Physiol. 1991 Jul;96(3):812–818. doi: 10.1104/pp.96.3.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Del Castillo L. D., Hunt S., Layzell D. B. The Role of Oxygen in the Regulation of Nitrogenase Activity in Drought-Stressed Soybean Nodules. Plant Physiol. 1994 Nov;106(3):949–955. doi: 10.1104/pp.106.3.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Del Castillo L. D., Layzell D. B. Drought Stress, Permeability to O2 Diffusion, and the Respiratory Kinetics of Soybean Root Nodules. Plant Physiol. 1995 Apr;107(4):1187–1194. doi: 10.1104/pp.107.4.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franssen H. J., Nap J. P., Gloudemans T., Stiekema W., Van Dam H., Govers F., Louwerse J., Van Kammen A., Bisseling T. Characterization of cDNA for nodulin-75 of soybean: A gene product involved in early stages of root nodule development. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4495–4499. doi: 10.1073/pnas.84.13.4495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gogorcena Y., Gordon A. J., Escuredo P. R., Minchin F. R., Witty J. F., Moran J. F., Becana M. N2 Fixation, Carbon Metabolism, and Oxidative Damage in Nodules of Dark-Stressed Common Bean Plants. Plant Physiol. 1997 Apr;113(4):1193–1201. doi: 10.1104/pp.113.4.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heim U., Weber H., Bäumlein H., Wobus U. A sucrose-synthase gene of Vicia faba L.: expression pattern in developing seeds in relation to starch synthesis and metabolic regulation. Planta. 1993;191(3):394–401. doi: 10.1007/BF00195698. [DOI] [PubMed] [Google Scholar]
- Huber S. C., Huber J. L., Liao P. C., Gage D. A., McMichael R. W., Jr, Chourey P. S., Hannah L. C., Koch K. Phosphorylation of serine-15 of maize leaf sucrose synthase. Occurrence in vivo and possible regulatory significance. Plant Physiol. 1996 Oct;112(2):793–802. doi: 10.1104/pp.112.2.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koch K. E., Nolte K. D., Duke E. R., McCarty D. R., Avigne W. T. Sugar Levels Modulate Differential Expression of Maize Sucrose Synthase Genes. Plant Cell. 1992 Jan;4(1):59–69. doi: 10.1105/tpc.4.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuzma M. M., Layzell D. B. Acclimation of Soybean Nodules to Changes in Temperature. Plant Physiol. 1994 Sep;106(1):263–270. doi: 10.1104/pp.106.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marsolier M. C., Debrosses G., Hirel B. Identification of several soybean cytosolic glutamine synthetase transcripts highly or specifically expressed in nodules: expression studies using one of the corresponding genes in transgenic Lotus corniculatus. Plant Mol Biol. 1995 Jan;27(1):1–15. doi: 10.1007/BF00019174. [DOI] [PubMed] [Google Scholar]
- Martin T., Frommer W. B., Salanoubat M., Willmitzer L. Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J. 1993 Aug;4(2):367–377. doi: 10.1046/j.1365-313x.1993.04020367.x. [DOI] [PubMed] [Google Scholar]
- Ricard B., Rivoal J., Spiteri A., Pradet A. Anaerobic stress induces the transcription and translation of sucrose synthase in rice. Plant Physiol. 1991 Mar;95(3):669–674. doi: 10.1104/pp.95.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salanoubat M., Belliard G. The steady-state level of potato sucrose synthase mRNA is dependent on wounding, anaerobiosis and sucrose concentration. Gene. 1989 Dec 7;84(1):181–185. doi: 10.1016/0378-1119(89)90153-4. [DOI] [PubMed] [Google Scholar]
- Shaw J. R., Ferl R. J., Baier J., St Clair D., Carson C., McCarty D. R., Hannah L. C. Structural features of the maize sus1 gene and protein. Plant Physiol. 1994 Dec;106(4):1659–1665. doi: 10.1104/pp.106.4.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silver D. L., Pinaev A., Chen R., De Bruijn F. J. Posttranscriptional Regulation of the Sesbania rostrata Early Nodulin Gene SrEnod2 by Cytokinin. Plant Physiol. 1996 Oct;112(2):559–567. doi: 10.1104/pp.112.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taliercio E. W., Chourey P. S. Post-transcriptional control of sucrose synthase expression in anaerobic seedlings of maize. Plant Physiol. 1989 Aug;90(4):1359–1364. doi: 10.1104/pp.90.4.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogels G. D., Van der Drift C. Differential analyses of glyoxylate derivatives. Anal Biochem. 1970 Jan;33(1):143–157. doi: 10.1016/0003-2697(70)90448-3. [DOI] [PubMed] [Google Scholar]
- Xue Z. T., Larsen K., Jochimsen B. U. Oxygen regulation of uricase and sucrose synthase synthesis in soybean callus tissue is exerted at the mRNA level. Plant Mol Biol. 1991 May;16(5):899–906. doi: 10.1007/BF00015081. [DOI] [PubMed] [Google Scholar]
- Yang N. S., Russell D. Maize sucrose synthase-1 promoter directs phloem cell-specific expression of Gus gene in transgenic tobacco plants. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4144–4148. doi: 10.1073/pnas.87.11.4144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zrenner R., Salanoubat M., Willmitzer L., Sonnewald U. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J. 1995 Jan;7(1):97–107. doi: 10.1046/j.1365-313x.1995.07010097.x. [DOI] [PubMed] [Google Scholar]