Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jul;114(3):999–1007. doi: 10.1104/pp.114.3.999

Calmodulin-stimulated Ca(2+)-ATPases in the vacuolar and plasma membranes in cauliflower.

P Askerlund 1
PMCID: PMC158388  PMID: 9232880

Abstract

The subcellular locations of Ca(2+)-ATPases in the membranes of cauliflower (Brassica oleracea L.) inflorescences were investigated. After continuous sucrose gradient centrifugation a 111-kD calmodulin (CaM)-stimulated and caM-binding Ca(2+)-ATPase (BCA1; P. Askerlund [1996] Plant Physiol 110: 913-922; S. Malmström, P. Askerlund, M.G. Plamgren [1997] FEBS Lett 400: 324-328) comigrated with vacuolar membrane markers, whereas a 116-kD caM-binding Ca(2+)-ATPase co-migrated with a marker for the plasma membrane. The 116 kD Ca(2+)-ATPase was enriched in plasma membranes obtained by aqueous two-phase partitioning, which is in agreement with a plasma membrane location of this Ca(2+)-ATPase. Countercurrent distribution of a low-density intracellular membrane fraction in an aqueous two-phase system resulted in the separation of the endoplasmic reticulum and vacuolar membranes. The 111-kD Ca(2+)-ATPase co-migrated with a vacuolar membrane marker after countercurrent distribution but not with markers for the endoplasmic reticulum. A vacuolar membrane location of the 111-kD Ca(2+)-AtPase was further supported by experiments with isolated vacuoles from cauliflower: (a) Immunoblotting with an antibody against the 111-kD Ca(2+)-ATPase showed that it was associated with the vacuoles, and (b) ATP-dependent Ca2+ uptake by the intact vacuoles was found to be CaM stimulated and partly protonophore insensitive.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Askerlund P., Evans D. E. Reconstitution and Characterization of a Calmodulin-Stimulated Ca-Pumping ATPase Purified from Brassica oleracea L. Plant Physiol. 1992 Dec;100(4):1670–1681. doi: 10.1104/pp.100.4.1670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Askerlund P., Laurent P., Nakagawa H., Kader J. C. NADH-Ferricyanide Reductase of Leaf Plasma Membranes : Partial Purification and Immunological Relation to Potato Tuber Microsomal NADH-Ferricyanide Reductase and Spinach Leaf NADH-Nitrate Reductase. Plant Physiol. 1991 Jan;95(1):6–13. doi: 10.1104/pp.95.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Askerlund P. Modulation of an Intracellular Calmodulin-Stimulated Ca2+-Pumping ATPase in Cauliflower by Trypsin (The Use of Calcium Green-5N to Measure Ca2+ Transport in Membrane Vesicles). Plant Physiol. 1996 Mar;110(3):913–922. doi: 10.1104/pp.110.3.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett A. B., O'neill S. D., Spanswick R. M. H-ATPase Activity from Storage Tissue of Beta vulgaris: I. Identification and Characterization of an Anion-Sensitive H-ATPase. Plant Physiol. 1984 Mar;74(3):538–544. doi: 10.1104/pp.74.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Briskin D. P. Ca-translocating ATPase of the plant plasma membrane. Plant Physiol. 1990 Oct;94(2):397–400. doi: 10.1104/pp.94.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carafoli E. Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J. 1994 Oct;8(13):993–1002. [PubMed] [Google Scholar]
  7. Denecke J., Goldman M. H., Demolder J., Seurinck J., Botterman J. The tobacco luminal binding protein is encoded by a multigene family. Plant Cell. 1991 Sep;3(9):1025–1035. doi: 10.1105/tpc.3.9.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dupont F. M., Bush D. S., Windle J. J., Jones R. L. Calcium and proton transport in membrane vesicles from barley roots. Plant Physiol. 1990 Sep;94(1):179–188. doi: 10.1104/pp.94.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferrol N., Bennett A. B. A Single Gene May Encode Differentially Localized Ca2+-ATPases in Tomato. Plant Cell. 1996 Jul;8(7):1159–1169. doi: 10.1105/tpc.8.7.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gilroy S., Bethke P. C., Jones R. L. Calcium homeostasis in plants. J Cell Sci. 1993 Oct;106(Pt 2):453–461. doi: 10.1242/jcs.106.2.453. [DOI] [PubMed] [Google Scholar]
  11. Hirschi K. D., Zhen R. G., Cunningham K. W., Rea P. A., Fink G. R. CAX1, an H+/Ca2+ antiporter from Arabidopsis. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8782–8786. doi: 10.1073/pnas.93.16.8782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hsieh W. L., Pierce W. S., Sze H. Calcium-pumping ATPases in vesicles from carrot cells : stimulation by calmodulin or phosphatidylserine, and formation of a 120 kilodalton phosphoenzyme. Plant Physiol. 1991 Dec;97(4):1535–1544. doi: 10.1104/pp.97.4.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huang L., Berkelman T., Franklin A. E., Hoffman N. E. Characterization of a gene encoding a Ca(2+)-ATPase-like protein in the plastid envelope. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10066–10070. doi: 10.1073/pnas.90.21.10066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hwang I., Ratterman D. M., Sze H. Distinction between Endoplasmic Reticulum-Type and Plasma Membrane-Type Ca2+ Pumps (Partial Purification of a 120-Kilodalton Ca2+-ATPase from Endomembranes). Plant Physiol. 1997 Feb;113(2):535–548. doi: 10.1104/pp.113.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Malmström S., Askerlund P., Palmgren M. G. A calmodulin-stimulated Ca2+-ATPase from plant vacuolar membranes with a putative regulatory domain at its N-terminus. FEBS Lett. 1997 Jan 6;400(3):324–328. doi: 10.1016/s0014-5793(96)01448-2. [DOI] [PubMed] [Google Scholar]
  16. Pohl T. Concentration of proteins and removal of solutes. Methods Enzymol. 1990;182:68–83. doi: 10.1016/0076-6879(90)82009-q. [DOI] [PubMed] [Google Scholar]
  17. Rasi-Caldogno F., Carnelli A., De Michelis M. I. Controlled Proteolysis Activates the Plasma Membrane Ca2+ Pump of Higher Plants (A Comparison with the Effect of Calmodulin in Plasma Membrane from Radish Seedlings). Plant Physiol. 1993 Oct;103(2):385–390. doi: 10.1104/pp.103.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rasi-Caldogno F., Pugliarello M. C., De Michelis M. I. The Ca-Transport ATPase of Plant Plasma Membrane Catalyzes a nH/Ca Exchange. Plant Physiol. 1987 Apr;83(4):994–1000. doi: 10.1104/pp.83.4.994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rooney E. K., Gross J. D., Satre M. Characterisation of an intracellular Ca2+ pump in Dictyostelium. Cell Calcium. 1994 Dec;16(6):509–522. doi: 10.1016/0143-4160(94)90081-7. [DOI] [PubMed] [Google Scholar]
  20. Stoscheck C. M. Quantitation of protein. Methods Enzymol. 1990;182:50–68. doi: 10.1016/0076-6879(90)82008-p. [DOI] [PubMed] [Google Scholar]
  21. Wimmers L. E., Ewing N. N., Bennett A. B. Higher plant Ca(2+)-ATPase: primary structure and regulation of mRNA abundance by salt. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9205–9209. doi: 10.1073/pnas.89.19.9205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. da Costa A. G., Madeira V. M. Proton ejection as a major feature of the Ca(2+)-pump. Biochim Biophys Acta. 1994 Jan 19;1189(2):181–188. doi: 10.1016/0005-2736(94)90064-7. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES