Abstract
Protoplasts isolated from red-light-grown maize (Zea mays L.) coleoptiles shrank transiently upon brief exposure (e.g. 30 s) to blue light under background irradiation with red light. The maximal volume reduction (about 4% at a saturating fluence) occurred about 5 min after blue-light stimulation. The response was prevented by the anion-channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid. Red light and far-red light did not induce any comparable response. Protoplasts of different sizes and those isolated from different coleoptile positions showed similar responses. After treatment with a saturating blue-light pulse, the protoplasts became responsive to a second pulse and gained full responsiveness within 5 min, suggesting that the photoreceptor system involves a dark-reversible component. The response to continuous blue light was also found to be transient. The protoplast volume was reduced during about 6 to 9 min of irradiation and returned within the next 30 min to the control level. The response to continuous blue light was saturated at 30 [mu]mol m-2 s-1. However, when the fluence rate was enhanced 10-fold after a period of irradiation at 30 [mu]mol m-2 s-1, the protoplasts showed another shrinking response. These and other kinetic results indicate that the photoreceptor system undergoes a photosensory adaptation. Growth in different zones of the coleoptile was inhibited by blue light transiently after pulse stimulation, as well as during continuous stimulation. It was concluded that the observed protoplast shrinking is related to the blue-light-induced inhibition of coleoptile growth.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmad M., Cashmore A. R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature. 1993 Nov 11;366(6451):162–166. doi: 10.1038/366162a0. [DOI] [PubMed] [Google Scholar]
- Amodeo G., Srivastava A., Zeiger E. Vanadate inhibits blue light-stimulated swelling of vicia guard cell protoplasts. Plant Physiol. 1992 Nov;100(3):1567–1570. doi: 10.1104/pp.100.3.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Briggs W. R. Light Dosage and Phototropic Responses of Corn and Oat Coleoptiles. Plant Physiol. 1960 Nov;35(6):951–962. doi: 10.1104/pp.35.6.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cosgrove D. J. Rapid Suppression of Growth by Blue Light: OCCURRENCE, TIME COURSE, AND GENERAL CHARACTERISTICS. Plant Physiol. 1981 Mar;67(3):584–590. doi: 10.1104/pp.67.3.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon S. A., Dobra W. A. Elongation responses of the oat shoot to blue light, as measured by capacitance auxanometry. Plant Physiol. 1972 Dec;50(6):738–742. doi: 10.1104/pp.50.6.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liscum E., Briggs W. R. Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell. 1995 Apr;7(4):473–485. doi: 10.1105/tpc.7.4.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liscum E., Young J. C., Poff K. L., Hangarter R. P. Genetic separation of phototropism and blue light inhibition of stem elongation. Plant Physiol. 1992 Sep;100(1):267–271. doi: 10.1104/pp.100.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spalding E. P., Cosgrove D. J. Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber. Planta. 1989;178:407–410. [PubMed] [Google Scholar]
- Spalding E. P., Cosgrove D. J. Mechanism of blue-light-induced plasma-membrane depolarization in etiolated cucumber hypocotyls. Planta. 1992 Sep;188(2):199–205. doi: 10.1007/BF00216814. [DOI] [PubMed] [Google Scholar]
- Warpeha K. M., Kaufman L. S. Blue-Light Regulation of Epicotyl Elongation in Pisum sativum. Plant Physiol. 1989 Feb;89(2):544–548. doi: 10.1104/pp.89.2.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Widholm J. M. The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol. 1972 Jul;47(4):189–194. doi: 10.3109/10520297209116483. [DOI] [PubMed] [Google Scholar]