Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jul;114(3):1031–1037. doi: 10.1104/pp.114.3.1031

Differential Localization of Antioxidants in Maize Leaves.

A G Doulis 1, N Debian 1, A H Kingston-Smith 1, C H Foyer 1
PMCID: PMC158391  PMID: 12223757

Abstract

The aim of this work was to determine the compartmentation of antioxidants between the bundle-sheath and mesophyll cells of maize (Zea mays L.) leaves. Rapid fractionation of the mesophyll compartment was used to minimize modifications in the antioxidant status and composition due to extraction procedures. The purity of the mesophyll isolates was assessed via the distribution of enzyme and metabolite markers. Ribulose-1,5 bisphosphate and ribulose-1,5-bisphosphate carboxylase/oxygenase were used as bundle-sheath markers and phosphoenolpyruvate carboxylase was used as the mesophyll marker enzyme. Glutathione reductase and dehydroascorbate reductase were almost exclusively localized in the mesophyll tissue, whereas ascorbate, ascorbate peroxidase, and superoxide dismutase were largely absent from the mesophyll fraction. Catalase, reduced glutathione, and monodehydroascorbate reductase were found to be approximately equally distributed between the two cell types. It is interesting that, whereas H2O2 levels were relatively high in maize leaves, this oxidant was largely restricted to the mesophyll compartment. We conclude that the antioxidants in maize leaves are partitioned between the two cell types according to the availability of reducing power and NADPH and that oxidized glutathione and dehydroascorbate produced in the bundle-sheat tissues have to be transported to the mesophyll for re-reduction to their reduced forms.

Full Text

The Full Text of this article is available as a PDF (869.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. V., Chevone B. I., Hess J. L. Seasonal variation in the antioxidant system of eastern white pine needles : evidence for thermal dependence. Plant Physiol. 1992 Feb;98(2):501–508. doi: 10.1104/pp.98.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Esterbauer H., Grill D. Seasonal Variation of Glutathione and Glutathione Reductase in Needles of Picea abies. Plant Physiol. 1978 Jan;61(1):119–121. doi: 10.1104/pp.61.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Furbank R. T., Taylor W. C. Regulation of Photosynthesis in C3 and C4 Plants: A Molecular Approach. Plant Cell. 1995 Jul;7(7):797–807. doi: 10.1105/tpc.7.7.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Griffith O. W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980 Jul 15;106(1):207–212. doi: 10.1016/0003-2697(80)90139-6. [DOI] [PubMed] [Google Scholar]
  6. Jamai A., Tommasini R., Martinoia E., Delrot S. Characterization of Glutathione Uptake in Broad Bean Leaf Protoplasts. Plant Physiol. 1996 Aug;111(4):1145–1152. doi: 10.1104/pp.111.4.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kaiser W. The effect of hydrogen peroxide on CO2 fixation of isolated intact chloroplasts. Biochim Biophys Acta. 1976 Sep 13;440(3):476–482. doi: 10.1016/0005-2728(76)90035-9. [DOI] [PubMed] [Google Scholar]
  8. Kingston-Smith A. H., Harbinson J., Williams J., Foyer C. H. Effect of Chilling on Carbon Assimilation, Enzyme Activation, and Photosynthetic Electron Transport in the Absence of Photoinhibition in Maize Leaves. Plant Physiol. 1997 Jul;114(3):1039–1046. doi: 10.1104/pp.114.3.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McKersie B. D., Bowley S. R., Harjanto E., Leprince O. Water-Deficit Tolerance and Field Performance of Transgenic Alfalfa Overexpressing Superoxide Dismutase. Plant Physiol. 1996 Aug;111(4):1177–1181. doi: 10.1104/pp.111.4.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mittler R., Zilinskas B. A. Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal Biochem. 1993 Aug 1;212(2):540–546. doi: 10.1006/abio.1993.1366. [DOI] [PubMed] [Google Scholar]
  11. Nakano Y., Edwards G. E. Hill Reaction, Hydrogen Peroxide Scavenging, and Ascorbate Peroxidase Activity of Mesophyll and Bundle Sheath Chloroplasts of NADP-Malic Enzyme Type C(4) Species. Plant Physiol. 1987 Sep;85(1):294–298. doi: 10.1104/pp.85.1.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. OWENS C. W., BELCHER R. V. A COLORIMETRIC MICRO-METHOD FOR THE DETERMINATION OF GLUTATHIONE. Biochem J. 1965 Mar;94:705–711. doi: 10.1042/bj0940705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Okuda T., Matsuda Y., Yamanaka A., Sagisaka S. Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol. 1991 Nov;97(3):1265–1267. doi: 10.1104/pp.97.3.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Prasad T. K., Anderson M. D., Martin B. A., Stewart C. R. Evidence for Chilling-Induced Oxidative Stress in Maize Seedlings and a Regulatory Role for Hydrogen Peroxide. Plant Cell. 1994 Jan;6(1):65–74. doi: 10.1105/tpc.6.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tsaftaris A. S., Bosabalidis A. M., Scandalios J. G. Cell-type-specific gene expression and acatalasemic peroxisomes in a null Cat2 catalase mutant of maize. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4455–4459. doi: 10.1073/pnas.80.14.4455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wise R. R., Naylor A. W. Chilling-enhanced photooxidation : evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol. 1987 Feb;83(2):278–282. doi: 10.1104/pp.83.2.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wong K. F., Davies D. D. Regulation of phosphoenolpyruvate carboxylase of Zea mays by metabolites. Biochem J. 1973 Mar;131(3):451–458. doi: 10.1042/bj1310451. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES