Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jul;114(3):1039–1046. doi: 10.1104/pp.114.3.1039

Effect of Chilling on Carbon Assimilation, Enzyme Activation, and Photosynthetic Electron Transport in the Absence of Photoinhibition in Maize Leaves.

A H Kingston-Smith 1, J Harbinson 1, J Williams 1, C H Foyer 1
PMCID: PMC158392  PMID: 12223758

Abstract

The relationships between electron transport and photosynthetic carbon metabolism were measured in maize (Zea mays L.) leaves following exposure to suboptimal temperatures. The quantum efficiency for electron transport in unchilled leaves was similar to that previously observed in C3 plants, although maize has two types of chloroplasts, mesophyll and bundle sheath, with PSII being largely absent from the latter. The index of noncyclic electron transport was proportional to the CO2 assimilation rate. Chilled leaves showed decreased rates of CO2 assimilation relative to unchilled leaves, but the integral relationships between the quantum efficiency for electron transport or the index of noncyclic electron transport and CO2 fixation were unchanged and there was no photoinhibition. The maximum catalytic activities of the Benson-Calvin cycle enzymes, fructose-1,6-bisphosphatase and ribulose-1,5-bisphosphate carboxylase, were decreased following chilling, but activation was unaffected. Measurements of thiol-regulated enzymes, particularly NADP-malate dehydrogenase, indicated that chilling induced changes in the stromal redox state so that reducing equivalents were more plentiful. We conclude that chilling produces a decrease in photosynthetic capacity without changing the internal operational, regulatory or stoichiometric relationships between photosynthetic electron transport and carbon assimilation. The enzymes of carbon assimilation are particularly sensitive to chilling, but enhanced activation may compensate for decreases in maximal catalytic activity.

Full Text

The Full Text of this article is available as a PDF (821.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Foyer C. H., Lelandais M., Harbinson J. Control of the Quantum Efficiencies of Photosystems I and II, Electron Flow, and Enzyme Activation following Dark-to-Light Transitions in Pea Leaves: Relationship between NADP/NADPH Ratios and NADP-Malate Dehydrogenase Activation State. Plant Physiol. 1992 Jul;99(3):979–986. doi: 10.1104/pp.99.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Harbinson J., Genty B., Baker N. R. Relationship between the Quantum Efficiencies of Photosystems I and II in Pea Leaves. Plant Physiol. 1989 Jul;90(3):1029–1034. doi: 10.1104/pp.90.3.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Harbinson J., Genty B., Foyer C. H. Relationship between Photosynthetic Electron Transport and Stromal Enzyme Activity in Pea Leaves : Toward an Understanding of the Nature of Photosynthetic Control. Plant Physiol. 1990 Oct;94(2):545–553. doi: 10.1104/pp.94.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Holaday A. S., Martindale W., Alred R., Brooks A. L., Leegood R. C. Changes in Activities of Enzymes of Carbon Metabolism in Leaves during Exposure of Plants to Low Temperature. Plant Physiol. 1992 Mar;98(3):1105–1114. doi: 10.1104/pp.98.3.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Martino-Catt S., Ort D. R. Low temperature interrupts circadian regulation of transcriptional activity in chilling-sensitive plants. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3731–3735. doi: 10.1073/pnas.89.9.3731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Wong K. F., Davies D. D. Regulation of phosphoenolpyruvate carboxylase of Zea mays by metabolites. Biochem J. 1973 Mar;131(3):451–458. doi: 10.1042/bj1310451. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES