Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jul;114(3):1061–1069. doi: 10.1104/pp.114.3.1061

Induction of the Root Cell Plasma Membrane Ferric Reductase (An Exclusive Role for Fe and Cu).

C K Cohen 1, W A Norvell 1, L V Kochian 1
PMCID: PMC158395  PMID: 12223760

Abstract

Induction of ferric reductase activity in dicots and nongrass monocots is a well-recognized response to Fe deficiency. Recent evidence has shown that Cu deficiency also induces plasma membrane Fe reduction. In this study we investigated whether other nutrient deficiencies could also induce ferric reductase activity in roots of pea (Pisum sativum L. cv Sparkle) seedlings. Of the nutrient deficiencies tested (K, Mg, Ca, Mn, Zn, Fe, and Cu), only Cu and Fe deficiencies elicited a response. Cu deficiency induced an activity intermediate between Fe-deficient and control plant activities. To ascertain whether the same reductase is induced by Fe and Cu deficiency, concentration- and pH-dependent kinetics of root ferric reduction were compared in plants grown under control, -Fe, and -Cu conditions. Additionally, rhizosphere acidification, another process induced by Fe deficiency, was quantified in pea seedlings grown under the three regimes. Control, Fe-deficient, and Cu-deficient plants exhibited no major differences in pH optima or Km for the kinetics of ferric reduction. However, the Vmax for ferric reduction was dramatically influenced by plant nutrient status, increasing 16- to 38-fold under Fe deficiency and 1.5- to 4-fold under Cu deficiency, compared with that of control plants. These results are consistent with a model in which varying amounts of the same enzyme are deployed on the plasma membrane in response to plant Fe or Cu status. Rhizosphere acidification rates in the Cu-deficient plants were similarly intermediate between those of the control and Fe-deficient plants. These results suggest that Cu deficiency induces the same responses induced by Fe deficiency in peas.

Full Text

The Full Text of this article is available as a PDF (900.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Askwith C., Eide D., Van Ho A., Bernard P. S., Li L., Davis-Kaplan S., Sipe D. M., Kaplan J. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell. 1994 Jan 28;76(2):403–410. doi: 10.1016/0092-8674(94)90346-8. [DOI] [PubMed] [Google Scholar]
  2. Buckhout T. J., Bell P. F., Luster D. G., Chaney R. L. Iron-Stress Induced Redox Activity in Tomato (Lycopersicum esculentum Mill.) Is Localized on the Plasma Membrane. Plant Physiol. 1989 May;90(1):151–156. doi: 10.1104/pp.90.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dancis A., Yuan D. S., Haile D., Askwith C., Eide D., Moehle C., Kaplan J., Klausner R. D. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell. 1994 Jan 28;76(2):393–402. doi: 10.1016/0092-8674(94)90345-x. [DOI] [PubMed] [Google Scholar]
  4. De Silva D. M., Askwith C. C., Eide D., Kaplan J. The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. J Biol Chem. 1995 Jan 20;270(3):1098–1101. doi: 10.1074/jbc.270.3.1098. [DOI] [PubMed] [Google Scholar]
  5. Fett W. F., Dunn M. F. Exopolysaccharides Produced by Phytopathogenic Pseudomonas syringae Pathovars in Infected Leaves of Susceptible Hosts. Plant Physiol. 1989 Jan;89(1):5–9. doi: 10.1104/pp.89.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fox T. C., Shaff J. E., Grusak M. A., Norvell W. A., Chen Y., Chaney R. L., Kochian L. V. Direct Measurement of 59Fe-Labeled Fe2+ Influx in Roots of Pea Using a Chelator Buffer System to Control Free Fe2+ in Solution. Plant Physiol. 1996 May;111(1):93–100. doi: 10.1104/pp.111.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grusak M. A., Pezeshgi S. Shoot-to-Root Signal Transmission Regulates Root Fe(III) Reductase Activity in the dgl Mutant of Pea. Plant Physiol. 1996 Jan;110(1):329–334. doi: 10.1104/pp.110.1.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hassett R., Kosman D. J. Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J Biol Chem. 1995 Jan 6;270(1):128–134. doi: 10.1074/jbc.270.1.128. [DOI] [PubMed] [Google Scholar]
  9. Holden M. J., Luster D. G., Chaney R. L., Buckhout T. J., Robinson C. Fe-Chelate Reductase Activity of Plasma Membranes Isolated from Tomato (Lycopersicon esculentum Mill.) Roots : Comparison of Enzymes from Fe-Deficient and Fe-Sufficient Roots. Plant Physiol. 1991 Oct;97(2):537–544. doi: 10.1104/pp.97.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jungmann J., Reins H. A., Lee J., Romeo A., Hassett R., Kosman D., Jentsch S. MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J. 1993 Dec 15;12(13):5051–5056. doi: 10.1002/j.1460-2075.1993.tb06198.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lee G. R., Nacht S., Lukens J. N., Cartwright G. E. Iron metabolism in copper-deficient swine. J Clin Invest. 1968 Sep;47(9):2058–2069. doi: 10.1172/JCI105891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moog P. R., van der Kooij T. A., Brüggemann W., Schiefelbein J. W., Kuiper P. J. Responses to iron deficiency in Arabidopsis thaliana: the Turbo iron reductase does not depend on the formation of root hairs and transfer cells. Planta. 1995;195(4):505–513. doi: 10.1007/BF00195707. [DOI] [PubMed] [Google Scholar]
  13. Núez M. T., Gaete V., Watkins J. A., Glass J. Mobilization of iron from endocytic vesicles. The effects of acidification and reduction. J Biol Chem. 1990 Apr 25;265(12):6688–6692. [PubMed] [Google Scholar]
  14. Percival S. S. Iron metabolism is modified by the copper status of a human erythroleukemic (K562) cell line. Proc Soc Exp Biol Med. 1992 Sep;200(4):522–527. doi: 10.3181/00379727-200-43465. [DOI] [PubMed] [Google Scholar]
  15. Ragan H. A., Nacht S., Lee G. R., Bishop C. R., Cartwright G. E. Effect of ceruloplasmin on plasma iron in copper-deficient swine. Am J Physiol. 1969 Nov;217(5):1320–1323. doi: 10.1152/ajplegacy.1969.217.5.1320. [DOI] [PubMed] [Google Scholar]
  16. Raja K. B., Simpson R. J., Peters T. J. Investigation of a role for reduction in ferric iron uptake by mouse duodenum. Biochim Biophys Acta. 1992 Jun 10;1135(2):141–146. doi: 10.1016/0167-4889(92)90129-y. [DOI] [PubMed] [Google Scholar]
  17. Rosenfield C. L., Reed D. W., Kent M. W. Dependency of Iron Reduction on Development of a Unique Root Morphology in Ficus benjamina L. Plant Physiol. 1991 Apr;95(4):1120–1124. doi: 10.1104/pp.95.4.1120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Römheld V., Marschner H. Mechanism of iron uptake by peanut plants : I. Fe reduction, chelate splitting, and release of phenolics. Plant Physiol. 1983 Apr;71(4):949–954. doi: 10.1104/pp.71.4.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sijmons P. C., van den Briel W., Bienfait H. F. Cytosolic NADPH is the electron donor for extracellular fe reduction in iron-deficient bean roots. Plant Physiol. 1984 May;75(1):219–221. doi: 10.1104/pp.75.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stearman R., Yuan D. S., Yamaguchi-Iwai Y., Klausner R. D., Dancis A. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science. 1996 Mar 15;271(5255):1552–1557. doi: 10.1126/science.271.5255.1552. [DOI] [PubMed] [Google Scholar]
  21. Susin S., Abadia A., Gonzalez-Reyes J. A., Lucena J. J., Abadia J. The pH Requirement for in Vivo Activity of the Iron-Deficiency-Induced "Turbo" Ferric Chelate Reductase (A Comparison of the Iron-Deficiency-Induced Iron Reductase Activities of Intact Plants and Isolated Plasma Membrane Fractions in Sugar Beet). Plant Physiol. 1996 Jan;110(1):111–123. doi: 10.1104/pp.110.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Watkins J. A., Altazan J. D., Elder P., Li C. Y., Nunez M. T., Cui X. X., Glass J. Kinetic characterization of reductant dependent processes of iron mobilization from endocytic vesicles. Biochemistry. 1992 Jun 30;31(25):5820–5830. doi: 10.1021/bi00140a018. [DOI] [PubMed] [Google Scholar]
  23. Watkins J. A., Nunez M. T., Gaete V., Alvarez O., Glass J. Kinetics of iron passage through subcellular compartments of rabbit reticulocytes. J Membr Biol. 1991 Jan;119(2):141–149. doi: 10.1007/BF01871413. [DOI] [PubMed] [Google Scholar]
  24. Yi Y., Guerinot M. L. Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J. 1996 Nov;10(5):835–844. doi: 10.1046/j.1365-313x.1996.10050835.x. [DOI] [PubMed] [Google Scholar]
  25. Yuan D. S., Stearman R., Dancis A., Dunn T., Beeler T., Klausner R. D. The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2632–2636. doi: 10.1073/pnas.92.7.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. de Silva D. M., Askwith C. C., Kaplan J. Molecular mechanisms of iron uptake in eukaryotes. Physiol Rev. 1996 Jan;76(1):31–47. doi: 10.1152/physrev.1996.76.1.31. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES