Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Jul;114(3):1103–1111. doi: 10.1104/pp.114.3.1103

Secretion of active recombinant phytase from soybean cell-suspension cultures.

J Li 1, C E Hegeman 1, R W Hanlon 1, G H Lacy 1, M D Denbow 1, E A Grabau 1
PMCID: PMC158400  PMID: 9232886

Abstract

Phytase, an enzyme that degrades the phosphorus storage compound phytate, has the potential to enhance phosphorus availability in animal diets when engineered into soybean (Glycine max) seeds. The phytase gene from Aspergillus niger was inserted into soybean transformation plasmids under control of constitutive and seed-specific promoters, with and without a plant signal sequence. Suspension cultures were used to confirm phytase expression in soybean cells. Phytase mRNA was observed in cultures containing constitutively expressed constructs. Phytase activity was detected in the culture medium from transformants that received constructs containing the plant signal sequence, confirming expectations that the protein would follow the default secretory pathway. Secretion also facilitated characterization of the biochemical properties of recombinant phytase. Soybean-synthesized phytase had a lower molecular mass than did the fungal enzyme. However, deglycosylation of the recombinant and fungal phytase yielded polypeptides of identical molecular mass (49 kD). Temperature and pH optima of the recombinant phytase were indistinguishable from the commercially available fungal phytase. Thermal inactivation studies of the recombinant phytase suggested that the additional protein stability would be required to withstand the elevated temperatures involved in soybean processing.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen Z. L., Schuler M. A., Beachy R. N. Functional analysis of regulatory elements in a plant embryo-specific gene. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8560–8564. doi: 10.1073/pnas.83.22.8560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cromwell G. L., Coffey R. D., Monegue H. J., Randolph J. H. Efficacy of low-activity, microbial phytase in improving the bioavailability of phosphorus in corn-soybean meal diets for pigs. J Anim Sci. 1995 Feb;73(2):449–456. doi: 10.2527/1995.732449x. [DOI] [PubMed] [Google Scholar]
  3. Denbow D. M., Ravindran V., Kornegay E. T., Yi Z., Hulet R. M. Improving phosphorus availability in soybean meal for broilers by supplemental phytase. Poult Sci. 1995 Nov;74(11):1831–1842. doi: 10.3382/ps.0741831. [DOI] [PubMed] [Google Scholar]
  4. Edge A. S., Faltynek C. R., Hof L., Reichert L. E., Jr, Weber P. Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal Biochem. 1981 Nov 15;118(1):131–137. doi: 10.1016/0003-2697(81)90168-8. [DOI] [PubMed] [Google Scholar]
  5. Ehrlich K. C., Montalbano B. G., Mullaney E. J., Dischinger H. C., Jr, Ullah A. H. Identification and cloning of a second phytase gene (phyB) from Aspergillus niger (ficuum). Biochem Biophys Res Commun. 1993 Aug 31;195(1):53–57. doi: 10.1006/bbrc.1993.2008. [DOI] [PubMed] [Google Scholar]
  6. Fang R. X., Nagy F., Sivasubramaniam S., Chua N. H. Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell. 1989 Jan;1(1):141–150. doi: 10.1105/tpc.1.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibson D. M., Ullah A. H. Purification and characterization of phytase from cotyledons of germinating soybean seeds. Arch Biochem Biophys. 1988 Feb 1;260(2):503–513. doi: 10.1016/0003-9861(88)90475-4. [DOI] [PubMed] [Google Scholar]
  8. Iturriaga G., Jefferson R. A., Bevan M. W. Endoplasmic reticulum targeting and glycosylation of hybrid proteins in transgenic tobacco. Plant Cell. 1989 Mar;1(3):381–390. doi: 10.1105/tpc.1.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kay R., Chan A., Daly M., McPherson J. Duplication of CaMV 35S Promoter Sequences Creates a Strong Enhancer for Plant Genes. Science. 1987 Jun 5;236(4806):1299–1302. doi: 10.1126/science.236.4806.1299. [DOI] [PubMed] [Google Scholar]
  10. Mullaney E. J., Gibson D. M., Ullah A. H. Positive identification of a lambda gt11 clone containing a region of fungal phytase gene by immunoprobe and sequence verification. Appl Microbiol Biotechnol. 1991 Aug;35(5):611–614. doi: 10.1007/BF00169625. [DOI] [PubMed] [Google Scholar]
  11. Nelson T. S., Shieh T. R., Wodzinski R. J., Ware J. H. Effect of supplemental phytase on the utilization of phytate phosphorus by chicks. J Nutr. 1971 Oct;101(10):1289–1293. doi: 10.1093/jn/101.10.1289. [DOI] [PubMed] [Google Scholar]
  12. Piddington C. S., Houston C. S., Paloheimo M., Cantrell M., Miettinen-Oinonen A., Nevalainen H., Rambosek J. The cloning and sequencing of the genes encoding phytase (phy) and pH 2.5-optimum acid phosphatase (aph) from Aspergillus niger var. awamori. Gene. 1993 Oct 29;133(1):55–62. doi: 10.1016/0378-1119(93)90224-q. [DOI] [PubMed] [Google Scholar]
  13. Silflow C. D., Hammett J. R., Key J. L. Sequence complexity of polyadenylated ribonucleic acid from soybean suspension culture cells. Biochemistry. 1979 Jun 26;18(13):2725–2731. doi: 10.1021/bi00580a006. [DOI] [PubMed] [Google Scholar]
  14. Tretter V., Altmann F., März L. Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached alpha 1----3 to the asparagine-linked N-acetylglucosamine residue. Eur J Biochem. 1991 Aug 1;199(3):647–652. doi: 10.1111/j.1432-1033.1991.tb16166.x. [DOI] [PubMed] [Google Scholar]
  15. Ullah A. H., Gibson D. M. Extracellular phytase (E.C. 3.1.3.8) from Aspergillus ficuum NRRL 3135: purification and characterization. Prep Biochem. 1987;17(1):63–91. doi: 10.1080/00327488708062477. [DOI] [PubMed] [Google Scholar]
  16. Verwoerd T. C., van Paridon P. A., van Ooyen A. J., van Lent J. W., Hoekema A., Pen J. Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol. 1995 Dec;109(4):1199–1205. doi: 10.1104/pp.109.4.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. van Hartingsveldt W., van Zeijl C. M., Harteveld G. M., Gouka R. J., Suykerbuyk M. E., Luiten R. G., van Paridon P. A., Selten G. C., Veenstra A. E., van Gorcom R. F. Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene. 1993 May 15;127(1):87–94. doi: 10.1016/0378-1119(93)90620-i. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES