Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Aug;114(4):1169–1175. doi: 10.1104/pp.114.4.1169

High-yield expression of pea thioredoxin m and assessment of its efficiency in chloroplast fructose-1,6-bisphosphatase activation.

J López Jaramillo 1, A Chueca 1, J P Jacquot 1, R Hermoso 1, J J Lázaro 1, M Sahrawy 1, J López Gorgé 1
PMCID: PMC158409  PMID: 9276945

Abstract

A cDNA clone encoding pea (Pisum sativum L.) chloroplast thioredoxin (Trx) m and its transit peptide were isolated from a pea cDNA library. Its deduced amino acid sequence showed 70% homology with spinach (Spinacia oleracea L.) Trx m and 25% homology with Trx f from pea and spinach. After subcloning in the Ndel-BamHI sites of pET-12a, the recombinant supplied 20 mg Trx m/L. Escherichia coli culture. This protein had 108 amino acids and was 12,000 D, which is identical to the pea leaf native protein. Unlike pea Trx f, pea Trx m showed a hyperbolic saturation of pea chloroplast fructose-1,6-bisphosphatase (FBPase), with a Trx m/ FBPase molar saturation ratio of about 60, compared with 4 for the Trx f/FBPase quotient. Cross-experiments have shown the ability of pea Trx m to activate the spinach chloroplast FBPase, results that are in contrast with those in spinach found by P. Schürmann, K. Maeda, and A. Tsugita ([1981] Eur J Biochem 116: 37-45), who did not find Trx m efficiency in FBPase activation. This higher efficiency of pea Trx m could be related to the presence of four basic residues (arginine-37, lysine-70, arginine-74, and lysine-97) flanking the regulatory cluster; spinach Trx m lacks the positive charge corresponding to lysine-70 of pea Trx m. This has been confirmed by K70E mutagenesis of pea Trx m, which leads to a 50% decrease in FBPase activation.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassham J. A., Krause G. H. Free energy changes and metabolic regulation in steady-state photosynthetic carbon reduction. Biochim Biophys Acta. 1969 Oct 21;189(2):207–221. doi: 10.1016/0005-2728(69)90048-6. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Brandes H. K., Larimer F. W., Geck M. K., Stringer C. D., Schürmann P., Hartman F. C. Direct identification of the primary nucleophile of thioredoxin f. J Biol Chem. 1993 Sep 5;268(25):18411–18414. [PubMed] [Google Scholar]
  4. Carrasco J. L., Chueca A., Prado F. E., Hermoso R., Lázaro J. J., Ramos J. L., Sahrawy M., López Gorgé J. Cloning, structure and expression of a pea cDNA clone coding for a photosynthetic fructose-1,6-bisphosphatase with some features different from those of the leaf chloroplast enzyme. Planta. 1994;193(4):494–501. doi: 10.1007/BF02411553. [DOI] [PubMed] [Google Scholar]
  5. Crawford N. A., Yee B. C., Hutcheson S. W., Wolosiuk R. A., Buchanan B. B. Enzyme regulation in C4 photosynthesis: purification, properties, and activities of thioredoxins from C4 and C3 plants. Arch Biochem Biophys. 1986 Jan;244(1):1–15. doi: 10.1016/0003-9861(86)90088-3. [DOI] [PubMed] [Google Scholar]
  6. Eklund H., Gleason F. K., Holmgren A. Structural and functional relations among thioredoxins of different species. Proteins. 1991;11(1):13–28. doi: 10.1002/prot.340110103. [DOI] [PubMed] [Google Scholar]
  7. Geck M. K., Larimer F. W., Hartman F. C. Identification of residues of spinach thioredoxin f that influence interactions with target enzymes. J Biol Chem. 1996 Oct 4;271(40):24736–24740. doi: 10.1074/jbc.271.40.24736. [DOI] [PubMed] [Google Scholar]
  8. Hermoso R., Castillo M., Chueca A., Lázaro J. J., Sahrawy M., Gorgé J. L. Binding site on pea chloroplast fructose-1,6-bisphosphatase involved in the interaction with thioredoxin. Plant Mol Biol. 1996 Feb;30(3):455–465. doi: 10.1007/BF00049324. [DOI] [PubMed] [Google Scholar]
  9. Hirel P. H., Schmitter M. J., Dessen P., Fayat G., Blanquet S. Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8247–8251. doi: 10.1073/pnas.86.21.8247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huppe H. C., Buchanan B. B. Activation of a chloroplast type of fructose bisphosphatase from Chlamydomonas reinhardtii by light-mediated agents. Z Naturforsch C. 1989 May-Jun;44(5-6):487–494. doi: 10.1515/znc-1989-5-624. [DOI] [PubMed] [Google Scholar]
  11. Häberlein I., Vogeler B. Completion of the thioredoxin reaction mechanism: kinetic evidence for protein complexes between thioredoxin and fructose 1,6-bisphosphatase. Biochim Biophys Acta. 1995 Dec 6;1253(2):169–174. doi: 10.1016/0167-4838(95)00153-1. [DOI] [PubMed] [Google Scholar]
  12. Hög J. O., von Bahr-Lindström H., Josephson S., Wallace B. J., Kushner S. R., Jörnvall H., Holmgren A. Nucleotide sequence of the thioredoxin gene from Escherichia coli. Biosci Rep. 1984 Nov;4(11):917–923. doi: 10.1007/BF01116889. [DOI] [PubMed] [Google Scholar]
  13. Kamo M., Tsugita A., Wiessner C., Wedel N., Bartling D., Herrmann R. G., Aguilar F., Gardet-Salvi L., Schürmann P. Primary structure of spinach-chloroplast thioredoxin f. Protein sequencing and analysis of complete cDNA clones for spinach-chloroplast thioredoxin f. Eur J Biochem. 1989 Jun 15;182(2):315–322. doi: 10.1111/j.1432-1033.1989.tb14832.x. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lepiniec L., Hodges M., Gadal P., Crétin C. Isolation, characterization and nucleotide sequence of a full-length pea cDNA encoding thioredoxin-f. Plant Mol Biol. 1992 Mar;18(5):1023–1025. doi: 10.1007/BF00019224. [DOI] [PubMed] [Google Scholar]
  16. López Jaramillo J., Chueca A., Sahrawy M., Hermoso R., Lázaro J. J., Prado F. E., López Gorgé J. Cloning and sequencing of a pea cDNA fragment coding for thioredoxin m. Plant Physiol. 1994 Jul;105(3):1021–1022. doi: 10.1104/pp.105.3.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maeda K., Tsugita A., Dalzoppo D., Vilbois F., Schürmann P. Further characterization and amino acid sequence of m-type thioredoxins from spinach chloroplasts. Eur J Biochem. 1986 Jan 2;154(1):197–203. doi: 10.1111/j.1432-1033.1986.tb09379.x. [DOI] [PubMed] [Google Scholar]
  18. Pla A., Lopez-Gorge J. Thioredoxin/fructose-1,6-bisphosphatase affinity in the enzyme activation by the ferredoxin-thioredoxin system. Biochim Biophys Acta. 1981 Jun 12;636(1):113–118. doi: 10.1016/0005-2728(81)90082-7. [DOI] [PubMed] [Google Scholar]
  19. Salamon Z., Tollin G., Hirasawa M., Gardet-Salvi L., Stritt-Etter A. L., Knaff D. B., Schürmann P. The oxidation-reduction properties of spinach thioredoxins f and m and of ferredoxin:thioredoxin reductase. Biochim Biophys Acta. 1995 Jun 30;1230(3):114–118. doi: 10.1016/0005-2728(95)00042-h. [DOI] [PubMed] [Google Scholar]
  20. Schürmann P., Maeda K., Tsugita A. Isomers in thioredoxins of spinach chloroplasts. Eur J Biochem. 1981 May;116(1):37–45. doi: 10.1111/j.1432-1033.1981.tb05297.x. [DOI] [PubMed] [Google Scholar]
  21. Stein M., Jacquot J. P., Jeannette E., Decottignies P., Hodges M., Lancelin J. M., Mittard V., Schmitter J. M., Miginiac-Maslow M. Chlamydomonas reinhardtii thioredoxins: structure of the genes coding for the chloroplastic m and cytosolic h isoforms; expression in Escherichia coli of the recombinant proteins, purification and biochemical properties. Plant Mol Biol. 1995 Jun;28(3):487–503. doi: 10.1007/BF00020396. [DOI] [PubMed] [Google Scholar]
  22. Wedel N., Clausmeyer S., Herrmann R. G., Gardet-Salvi L., Schürmann P. Nucleotide sequence of cDNAs encoding the entire precursor polypeptide for thioredoxin m from spinach chloroplasts. Plant Mol Biol. 1992 Feb;18(3):527–533. doi: 10.1007/BF00040668. [DOI] [PubMed] [Google Scholar]
  23. Wolosiuk R. A., Crawford N. A., Yee B. C., Buchanan B. B. Isolation of three thioredoxins from spinach leaves. J Biol Chem. 1979 Mar 10;254(5):1627–1632. [PubMed] [Google Scholar]
  24. de Lamotte-Guery F., Miginiac-Maslow M., Decottignies P., Stein M., Minard P., Jacquot J. P. Mutation of a negatively charged amino acid in thioredoxin modifies its reactivity with chloroplastic enzymes. Eur J Biochem. 1991 Mar 14;196(2):287–294. doi: 10.1111/j.1432-1033.1991.tb15816.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES