Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Aug;114(4):1273–1281. doi: 10.1104/pp.114.4.1273

Inorganic Carbon Accumulation Stimulates Linear Electron Flow to Artificial Electron Acceptors of Photosystem I in Air-Grown Cells of the Cyanobacterium Synechococcus UTEX 625.

Q Li 1, D T Canvin 1
PMCID: PMC158420  PMID: 12223770

Abstract

The effect of inorganic carbon (Ci) transport and accumulation on photosynthetic electron transport was studied in air-grown cells of the cyanobacterium Synechococcus UTEX 625. When the cells were depleted of Ci, linear photosynthetic electron flow was almost completely inhibited in the presence of the photosystem I (PSI) acceptor N,N-dimethyl-p-nitrosoaniline (PNDA). The addition of Ci to these cells, in which CO2 fixation was inhibited with glycolaldehyde, greatly stimulated linear electron flow and resulted in increased levels of photochemical quenching and O2 evolution. In aerobic conditions substantial quenching resulted from methyl viologen (MV) addition and further quenching was not observed upon the addition of Ci. In anaerobic conditions MV addition did not result in quenching until Ci was added. Intracellular Ci pools were formed when MV was present in aerobic or anaerobic conditions or PNDA was present in aerobic conditions. There was no inhibitory effect of Ci depletion on electron flow to 2,6-dimethylbenzoquinone and oxidized diaminodurene, which accept electrons from photosystem II. The degree of stimulation of PNDA-dependent O2 evolution varied with the Ci concentration. The extracellular Ci, concentration required for a half-maximum rate (K1/2) was 3.8 [mu]M and the intracellular K1/2 was 1.4 mM for the stimulation of PNDA reduction. These values agreed closely with the K1/2 values of extracellular and intracellular Ci for O2 photoreduction. Linear electron flow to artificial electron acceptors of PSI was enhanced by intracellular Ci, which appeared to exert an effect on PSI or on the intersystem electron transport chain.

Full Text

The Full Text of this article is available as a PDF (956.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown S., Miller W. G. Determination of magnesium in serum by the technicon SMAC with a calmagite method with blank correction. Clin Chem. 1990 Nov;36(11):1990–1991. [PubMed] [Google Scholar]
  2. Crotty C. M., Tyrrell P. N., Espie G. S. Quenching of Chlorophyll a Fluorescence in Response to Na+-Dependent HCO3- Transport-Mediated Accumulation of Inorganic Carbon in the Cyanobacterium Synechococcus UTEX 625. Plant Physiol. 1994 Feb;104(2):785–791. doi: 10.1104/pp.104.2.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Espie G. S., Canvin D. T. Evidence for Na-Independent HCO(3) Uptake by the Cyanobacterium Synechococcus leopoliensis. Plant Physiol. 1987 May;84(1):125–130. doi: 10.1104/pp.84.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Miller A. G., Espie G. S., Canvin D. T. Active Transport of CO(2) by the Cyanobacterium Synechococcus UTEX 625 : Measurement by Mass Spectrometry. Plant Physiol. 1988 Mar;86(3):677–683. doi: 10.1104/pp.86.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Miller A. G., Espie G. S., Canvin D. T. Chlorophyll a Fluorescence Yield as a Monitor of Both Active CO(2) and HCO(3) Transport by the Cyanobacterium Synechococcus UTEX 625. Plant Physiol. 1988 Mar;86(3):655–658. doi: 10.1104/pp.86.3.655. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES