Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Aug;114(4):1293–1305. doi: 10.1104/pp.114.4.1293

Acidic phosphoprotein complex of the 60S ribosomal subunit of maize seedling roots. Components and changes in response to flooding.

J Bailey-Serres 1, S Vangala 1, K Szick 1, C H Lee 1
PMCID: PMC158422  PMID: 9276949

Abstract

We determined that ribosomes of seedling roots of maize (Zea mays L.) contain the acidic phosphoproteins (P-proteins) known to form a flexible lateral stalk structure of the 60S subunit of eukaryotic ribosomes. The P-protein stalk, composed of P0, P1, and P2, interacts with elongation factors, mRNA, and tRNA during translation. Acidic proteins of 13 to 15.5 kD were released as a complex from ribosomes with 0.4 M NH4Cl/50% ethanol. Protein and cDNA sequence analysis confirmed that maize ribosomes contain one type of P1, two types of P2, and a fourth and novel P1/P2-type protein. This novel P-protein, designated P3, has the conserved C terminus of P1 and P2. P1, P2, and P3 are similar in deduced mass (11.4-12.2 kD) and isoelectric point (4.1-4.3). A 35.5- to 36-kD acidic protein was released at low levels from ribosomes with 1.0 M NH4Cl/50% ethanol and identified as P0. Labeling of roots with [32P]inorganic phosphate confirmed the in vivo phosphorylation of the P-proteins. Flooding caused dynamic changes in the P-protein complex, which affected the potential of ribosome-associated kinases and casein kinase II to phosphorylate the P-proteins. We discuss possible alterations of the ribosomal P-protein complex and consider that these changes may be involved in the selective translation of mRNA in flooded roots.

Full Text

The Full Text of this article is available as a PDF (4.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bailey-Serres J., Dawe R. K. Both 5' and 3' sequences of maize adh1 mRNA are required for enhanced translation under low-oxygen conditions. Plant Physiol. 1996 Oct;112(2):685–695. doi: 10.1104/pp.112.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bailey-Serres J., Freeling M. Hypoxic stress-induced changes in ribosomes of maize seedling roots. Plant Physiol. 1990 Nov;94(3):1237–1243. doi: 10.1104/pp.94.3.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beltrame M., Bianchi M. E. A gene family for acidic ribosomal proteins in Schizosaccharomyces pombe: two essential and two nonessential genes. Mol Cell Biol. 1990 May;10(5):2341–2348. doi: 10.1128/mcb.10.5.2341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Elkon K., Skelly S., Parnassa A., Moller W., Danho W., Weissbach H., Brot N. Identification and chemical synthesis of a ribosomal protein antigenic determinant in systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7419–7423. doi: 10.1073/pnas.83.19.7419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grankowski N., Gasior E., Issinger O. G. Synthetic peptides and ribosomal proteins as substrate for 60S ribosomal protein kinase from yeast cells. Biochim Biophys Acta. 1993 Oct 3;1158(2):194–196. doi: 10.1016/0304-4165(93)90014-y. [DOI] [PubMed] [Google Scholar]
  7. Hihara Y., Umeda M., Hara C., Toriyama K., Uchimiya H. Nucleotide sequence of a rice acidic ribosomal phosphoprotein P0 cDNA. Plant Physiol. 1994 Jun;105(2):753–754. doi: 10.1104/pp.105.2.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Lavergne J. P., Marzouki A., Reboud J. P., Reboud A. M. Reconstitution of the active rat liver 60 S ribosomal subunit from different preparations of core particles and split proteins. FEBS Lett. 1988 Aug 29;236(2):345–351. doi: 10.1016/0014-5793(88)80053-x. [DOI] [PubMed] [Google Scholar]
  10. Liljas A. Comparative biochemistry and biophysics of ribosomal proteins. Int Rev Cytol. 1991;124:103–136. doi: 10.1016/s0074-7696(08)61525-9. [DOI] [PubMed] [Google Scholar]
  11. Mitsui K., Nakagawa T., Tsurugi K. On the size and the role of a free cytosolic pool of acidic ribosomal proteins in yeast Saccharomyces cerevisiae. J Biochem. 1988 Dec;104(6):908–911. doi: 10.1093/oxfordjournals.jbchem.a122581. [DOI] [PubMed] [Google Scholar]
  12. Newton C. H., Shimmin L. C., Yee J., Dennis P. P. A family of genes encode the multiple forms of the Saccharomyces cerevisiae ribosomal proteins equivalent to the Escherichia coli L12 protein and a single form of the L10-equivalent ribosomal protein. J Bacteriol. 1990 Feb;172(2):579–588. doi: 10.1128/jb.172.2.579-588.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Palen E., Traugh J. A. Phosphorylation of casein kinase II. Biochemistry. 1991 Jun 4;30(22):5586–5590. doi: 10.1021/bi00236a035. [DOI] [PubMed] [Google Scholar]
  14. Pilecki M., Grankowski N., Jacobs J., Gasior E. Specific protein kinase from Saccharomyces cerevisiae cells phosphorylating 60S ribosomal proteins. Eur J Biochem. 1992 May 15;206(1):259–267. doi: 10.1111/j.1432-1033.1992.tb16924.x. [DOI] [PubMed] [Google Scholar]
  15. Remacha M., Jimenez-Diaz A., Bermejo B., Rodriguez-Gabriel M. A., Guarinos E., Ballesta J. P. Ribosomal acidic phosphoproteins P1 and P2 are not required for cell viability but regulate the pattern of protein expression in Saccharomyces cerevisiae. Mol Cell Biol. 1995 Sep;15(9):4754–4762. doi: 10.1128/mcb.15.9.4754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Remacha M., Santos C., Ballesta J. P. Disruption of single-copy genes encoding acidic ribosomal proteins in Saccharomyces cerevisiae. Mol Cell Biol. 1990 May;10(5):2182–2190. doi: 10.1128/mcb.10.5.2182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Remacha M., Santos C., Bermejo B., Naranda T., Ballesta J. P. Stable binding of the eukaryotic acidic phosphoproteins to the ribosome is not an absolute requirement for in vivo protein synthesis. J Biol Chem. 1992 Jun 15;267(17):12061–12067. [PubMed] [Google Scholar]
  18. Saenz-Robles M. T., Remacha M., Vilella M. D., Zinker S., Ballesta J. P. The acidic ribosomal proteins as regulators of the eukaryotic ribosomal activity. Biochim Biophys Acta. 1990 Aug 27;1050(1-3):51–55. doi: 10.1016/0167-4781(90)90140-w. [DOI] [PubMed] [Google Scholar]
  19. Santos C., Ballesta J. P. Ribosomal protein P0, contrary to phosphoproteins P1 and P2, is required for ribosome activity and Saccharomyces cerevisiae viability. J Biol Chem. 1994 Jun 3;269(22):15689–15696. [PubMed] [Google Scholar]
  20. Santos C., Ortiz-Reyes B., Naranda T., Remacha M., Ballesta J. P. The acidic phosphoproteins from Saccharomyces cerevisiae ribosomes. NH2-terminal acetylation is a conserved difference between P1 and P2 proteins. Biochemistry. 1993 Apr 27;32(16):4231–4236. doi: 10.1021/bi00067a010. [DOI] [PubMed] [Google Scholar]
  21. Schijman A. G., Vazquez M. P., Dov C. B., Ghio S., Lorenzi H., Levin M. J. Cloning and sequence analysis of the TcP2 beta cDNA variants of Trypanosoma cruzi. Biochim Biophys Acta. 1995 Oct 17;1264(1):15–18. doi: 10.1016/0167-4781(95)00142-4. [DOI] [PubMed] [Google Scholar]
  22. Schmidt R. J., Veit B., Mandel M. A., Mena M., Hake S., Yanofsky M. F. Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell. 1993 Jul;5(7):729–737. doi: 10.1105/tpc.5.7.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sáenz-Robles M. T., Vilella M. D., Pucciarelli G., Polo F., Remacha M., Ortíz B. L., Vidales F. J., Ballesta J. P. Ribosomal protein interactions in yeast. Protein L15 forms a complex with the acidic proteins. Eur J Biochem. 1988 Nov 15;177(3):531–537. doi: 10.1111/j.1432-1033.1988.tb14405.x. [DOI] [PubMed] [Google Scholar]
  24. Sánchez-Madrid F., Vidales F. J., Ballesta J. P. Effect of phosphorylation on the affinity of acidic proteins from Saccharomyces cerevisiae for the ribosomes. Eur J Biochem. 1981 Mar;114(3):609–613. doi: 10.1111/j.1432-1033.1981.tb05187.x. [DOI] [PubMed] [Google Scholar]
  25. The electronic Plant Gene Register. Plant Physiol. 1995 Oct;109(2):721–723. doi: 10.1104/pp.109.2.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Towbin H., Ramjoué H. P., Kuster H., Liverani D., Gordon J. Monoclonal antibodies against eucaryotic ribosomes. Use to characterize a ribosomal protein not previously identified and antigenically related to the acidic phosphoproteins P1/P2. J Biol Chem. 1982 Nov 10;257(21):12709–12715. [PubMed] [Google Scholar]
  27. Tsurugi K., Collatz E., Todokoro K., Ulbrich N., Lightfoot H. N., Wool I. G. Isolation of eukaryotic ribosomal proteins. Purification and characterization of the 60 S ribosomal subunit proteins La, Lb, Lf, P1, P2, L13', L14, L18', L20, and L38. J Biol Chem. 1978 Feb 10;253(3):946–955. [PubMed] [Google Scholar]
  28. Verschoor A., Srivastava S., Grassucci R., Frank J. Native 3D structure of eukaryotic 80s ribosome: morphological homology with E. coli 70S ribosome. J Cell Biol. 1996 May;133(3):495–505. doi: 10.1083/jcb.133.3.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Webster C., Kim C. Y., Roberts J. K. Elongation and termination reactions of protein synthesis on maize root tip polyribosomes studied in a homologous cell-free system. Plant Physiol. 1991 Jun;96(2):418–425. doi: 10.1104/pp.96.2.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wool I. G., Chan Y. L., Glück A., Suzuki K. The primary structure of rat ribosomal proteins P0, P1, and P2 and a proposal for a uniform nomenclature for mammalian and yeast ribosomal proteins. Biochimie. 1991 Jul-Aug;73(7-8):861–870. doi: 10.1016/0300-9084(91)90127-m. [DOI] [PubMed] [Google Scholar]
  31. Zhang S. H., Broome M. A., Lawton M. A., Hunter T., Lamb C. J. atpk1, a novel ribosomal protein kinase gene from Arabidopsis. II. Functional and biochemical analysis of the encoded protein. J Biol Chem. 1994 Jul 1;269(26):17593–17599. [PubMed] [Google Scholar]
  32. Zinker S. P5/P5' the acidic ribosomal phosphoproteins from Saccharomyces cerevisiae. Biochim Biophys Acta. 1980;606(1):76–82. doi: 10.1016/0005-2787(80)90099-4. [DOI] [PubMed] [Google Scholar]
  33. Zinker S., Warner J. R. The ribosomal proteins of Saccharomyces cerevisiae. Phosphorylated and exchangeable proteins. J Biol Chem. 1976 Mar 25;251(6):1799–1807. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES