Abstract
A mutant strain of Bradyrhizobium japonicum USDA 110 devoid of [alpha]-ketoglutarate dehydrogenase activity (LSG184) was used to test whether this tricarboxylic acid cycle enzyme is necessary to support nitrogen fixation during symbiosis with soybean (Glycine max). LSG184 formed nodules about 5 d later than the wild-type strain, and the nodules, although otherwise normal in structure, contained many fewer infected host cells than is typical. At 19 d after inoculation cells infected with the mutant strain were only partially filled with bacteroids and showed large accumulations of starch, but by 32 d after inoculation the host cells infected with the mutant appeared normal. The onset of nitrogen fixation was delayed about 15 d for plants inoculated with LSG184, and the rate, on a per nodule fresh weight basis, reached only about 20% of normal. However, because nodules formed by LSG184 contained only about 20% of the normal number of bacteroids, it could be inferred that the mutant, on an individual bacteroid basis, was fixing nitrogen at near wild-type rates. Therefore, the loss of [alpha]-ketoglutarate dehydrogenase in B. japonicum does not prevent the formation or the functioning of nitrogen-fixing bacteroids in soybean.
Full Text
The Full Text of this article is available as a PDF (2.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acuña G., Ebeling S., Hennecke H. Cloning, sequencing, and mutational analysis of the Bradyrhizobium japonicum fumC-like gene: evidence for the existence of two different fumarases. J Gen Microbiol. 1991 Apr;137(4):991–1000. doi: 10.1099/00221287-137-4-991. [DOI] [PubMed] [Google Scholar]
- Chun J. Y., Stacey G. A Bradyrhizobium japonicum gene essential for nodulation competitiveness is differentially regulated from two promoters. Mol Plant Microbe Interact. 1994 Mar-Apr;7(2):248–255. doi: 10.1094/mpmi-7-0248. [DOI] [PubMed] [Google Scholar]
- Duncan M. J., Fraenkel D. G. alpha-Ketoglutarate dehydrogenase mutant of Rhizobium meliloti. J Bacteriol. 1979 Jan;137(1):415–419. doi: 10.1128/jb.137.1.415-419.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green L. S., Emerich D. W. Bradyrhizobium japonicum does not require alpha-ketoglutarate dehydrogenase for growth on succinate or malate. J Bacteriol. 1997 Jan;179(1):194–201. doi: 10.1128/jb.179.1.194-201.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karr D. B., Waters J. K., Suzuki F., Emerich D. W. Enzymes of the Poly-beta-Hydroxybutyrate and Citric Acid Cycles of Rhizobium japonicum Bacteroids. Plant Physiol. 1984 Aug;75(4):1158–1162. doi: 10.1104/pp.75.4.1158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Pueppke S. G., Payne J. H. Responses of Rj(1) and rj(1) Soybean Isolines to Inoculation with Bradyrhizobium japonicum. Plant Physiol. 1987 Aug;84(4):1291–1295. doi: 10.1104/pp.84.4.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salminen S. O., Streeter J. G. Involvement of glutamate in the respiratory metabolism of Bradyrhizobium japonicum bacteroids. J Bacteriol. 1987 Feb;169(2):495–499. doi: 10.1128/jb.169.2.495-499.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salminen S. O., Streeter J. G. Labeling of Carbon Pools in Bradyrhizobium japonicum and Rhizobium leguminosarum bv viciae Bacteroids following Incubation of Intact Nodules with CO(2). Plant Physiol. 1992 Oct;100(2):597–604. doi: 10.1104/pp.100.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stacey G., So J. S., Roth L. E., Lakshmi SK B., Carlson R. W. A lipopolysaccharide mutant of Bradyrhizobium japonicum that uncouples plant from bacterial differentiation. Mol Plant Microbe Interact. 1991 Jul-Aug;4(4):332–340. doi: 10.1094/mpmi-4-332. [DOI] [PubMed] [Google Scholar]
- Stovall I., Cole M. Organic Acid Metabolism by Isolated Rhizobium japonicum Bacteroids. Plant Physiol. 1978 May;61(5):787–790. doi: 10.1104/pp.61.5.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thöny-Meyer L., Künzler P. The Bradyrhizobium japonicum aconitase gene (acnA) is important for free-living growth but not for an effective root nodule symbiosis. J Bacteriol. 1996 Nov;178(21):6166–6172. doi: 10.1128/jb.178.21.6166-6172.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong P. P., Evans H. J. Poly-beta-hydroxybutyrate Utilization by Soybean (Glycine max Merr.) Nodules and Assessment of Its Role in Maintenance of Nitrogenase Activity. Plant Physiol. 1971 Jun;47(6):750–755. doi: 10.1104/pp.47.6.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- el-Din A. K. A succinate transport mutant of Bradyrhizobium japonicum forms ineffective nodules on soybeans. Can J Microbiol. 1992 Mar;38(3):230–234. doi: 10.1139/m92-039. [DOI] [PubMed] [Google Scholar]