Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Aug;114(4):1453–1460. doi: 10.1104/pp.114.4.1453

cDNA clones encoding 1,3-beta-glucanase and a fimbrin-like cytoskeletal protein are induced by Al toxicity in wheat roots.

R Cruz-Ortega 1, J C Cushman 1, J D Ownby 1
PMCID: PMC158438  PMID: 9276954

Abstract

A cDNA library made from mRNA of Al-treated roots of an Al-sensitive wheat (Triticum aestivum cv Victory) cultivar was screened with a degenerate oligonucleotide probe derived from the partial amino acid sequence of the Al-induced protein TAI-18. Of seven clones that initially hybridized with the probe, one encoded a novel 1,3-beta-glucanase having a calculated molecular weight of 46.3 and an isoelectric point of 6.0. Like the A6 1,3-beta-glucanase gene products from Brassica napus and Arabidopsis thaliana, the predicted wheat protein had a C-terminal extension with three potential glycosylation sites. Northern analysis revealed that wheat 1,3-beta-glucanase mRNA was up-regulated in Al-intoxicated roots, with highest expression after 12 h. The antibody to A6 1,3-beta-glucanase from B. napus cross-reacted with a 56-kD protein that was induced after 24 h. A second partial cDNA clone showed similarity to genes encoding cytoskeletal fimbrin-like (actin-bundling) proteins. Although well studied in animals and fungi, fimbrins have not previously been described in plants. Fimbrin-like transcripts were up-regulated after 24 h of Al treatment in the Al-sensitive wheat cv Victory. In the Al-tolerant cv Atlas 66, fimbrin-like mRNA was up-regulated within 12 h by Al concentrations that did not inhibit root growth. Cellular stress associated with Al toxicity therefore causes up-regulation of a defense-related gene and a gene involved in the maintenance of cytoskeletal function.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams A. E., Botstein D., Drubin D. G. Requirement of yeast fimbrin for actin organization and morphogenesis in vivo. Nature. 1991 Dec 5;354(6352):404–408. doi: 10.1038/354404a0. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Aniol A. Induction of aluminum tolerance in wheat seedlings by low doses of aluminum in the nutrient solution. Plant Physiol. 1984 Nov;76(3):551–555. doi: 10.1104/pp.76.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Basu A., Basu U., Taylor G. J. Induction of Microsomal Membrane Proteins in Roots of an Aluminum-Resistant Cultivar of Triticum aestivum L. under Conditions of Aluminum Stress. Plant Physiol. 1994 Mar;104(3):1007–1013. doi: 10.1104/pp.104.3.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blanchard A., Ohanian V., Critchley D. The structure and function of alpha-actinin. J Muscle Res Cell Motil. 1989 Aug;10(4):280–289. doi: 10.1007/BF01758424. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Chang M. M., Hadwiger L. A., Horovitz D. Molecular characterization of a pea beta-1,3-glucanase induced by Fusarium solani and chitosan challenge. Plant Mol Biol. 1992 Nov;20(4):609–618. doi: 10.1007/BF00046446. [DOI] [PubMed] [Google Scholar]
  8. Delhaize E., Ryan P. R. Aluminum Toxicity and Tolerance in Plants. Plant Physiol. 1995 Feb;107(2):315–321. doi: 10.1104/pp.107.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hird D. L., Worrall D., Hodge R., Smartt S., Paul W., Scott R. The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity to beta-1,3-glucanases. Plant J. 1993 Dec;4(6):1023–1033. doi: 10.1046/j.1365-313x.1993.04061023.x. [DOI] [PubMed] [Google Scholar]
  10. Kopczynski C. C., Scandalios J. G. Cat-2 gene expression. Developmental control of translatable CAT-2 mRNA levels in maize scutellum. Mol Gen Genet. 1986 Apr;203(1):185–188. doi: 10.1007/BF00330401. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Lin C. S., Leavitt J. Cloning and characterization of a cDNA encoding transformation-sensitive tropomyosin isoform 3 from tumorigenic human fibroblasts. Mol Cell Biol. 1988 Jan;8(1):160–168. doi: 10.1128/mcb.8.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lin C. S., Shen W., Chen Z. P., Tu Y. H., Matsudaira P. Identification of I-plastin, a human fimbrin isoform expressed in intestine and kidney. Mol Cell Biol. 1994 Apr;14(4):2457–2467. doi: 10.1128/mcb.14.4.2457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Malehorn D. E., Scott K. J., Shah D. M. Structure and expression of a barley acidic beta-glucanase gene. Plant Mol Biol. 1993 May;22(2):347–360. doi: 10.1007/BF00014941. [DOI] [PubMed] [Google Scholar]
  15. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Richards K. D., Snowden K. C., Gardner R. C. Wali6 and wali7. Genes induced by aluminum in wheat (Triticum aestivum L.) roots. Plant Physiol. 1994 Aug;105(4):1455–1456. doi: 10.1104/pp.105.4.1455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shinshi H., Wenzler H., Neuhaus J. M., Felix G., Hofsteenge J., Meins F. Evidence for N- and C-terminal processing of a plant defense-related enzyme: Primary structure of tobacco prepro-beta-1,3-glucanase. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5541–5545. doi: 10.1073/pnas.85.15.5541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Taylor G. J., Basu A., Basu U., Slaski J. J., Zhang G., Good A. Al-Induced, 51-Kilodalton, Membrane-Bound Proteins Are Associated with Resistance to Al in a Segregating Population of Wheat. Plant Physiol. 1997 May;114(1):363–372. doi: 10.1104/pp.114.1.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Xu P., Wang J., Fincher G. B. Evolution and differential expression of the (1-->3)-beta-glucan endohydrolase-encoding gene family in barley, Hordeum vulgare. Gene. 1992 Oct 21;120(2):157–165. doi: 10.1016/0378-1119(92)90089-8. [DOI] [PubMed] [Google Scholar]
  20. Zhao X. J., Sucoff E., Stadelmann E. J. Al and Ca Alteration of Membrane Permeability of Quercus rubra Root Cortex Cells. Plant Physiol. 1987 Jan;83(1):159–162. doi: 10.1104/pp.83.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. de Arruda M. V., Watson S., Lin C. S., Leavitt J., Matsudaira P. Fimbrin is a homologue of the cytoplasmic phosphoprotein plastin and has domains homologous with calmodulin and actin gelation proteins. J Cell Biol. 1990 Sep;111(3):1069–1079. doi: 10.1083/jcb.111.3.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES