Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Aug;114(4):1461–1470. doi: 10.1104/pp.114.4.1461

Partial characterization of glutathione S-transferases from wheat (Triticum spp.) and purification of a safener-induced glutathione S-transferase from Triticum tauschii.

D E Riechers 1, G P Irzyk 1, S S Jones 1, E P Fuerst 1
PMCID: PMC158439  PMID: 9276955

Abstract

Hexaploid wheat (Triticum aestivum L.) has very low constitutive glutathione S-transferase (GST) activity when assayed with the chloroacetamide herbicide dimethenamid as a substrate, which may account for its low tolerance to dimethenamid in the field. Treatment of seeds with the herbicide safener fluxofenim increased the total GST activity extracted from T. aestivum shoots 9-fold when assayed with dimethenamid as a substrate, but had no effect on glutathione levels. Total GST activity in crude protein extracts from T. aestivum, Triticum durum, and Triticum tauschii was separated into several component GST activities by anion-exchange fast-protein liquid chromatography. These activities (isozymes) differed with respect to their activities toward dimethenamid or 1-chloro-2,4-dinitrobenzene as substrates and in their levels of induction by safener treatment. A safener-induced GST isozyme was subsequently purified by anion-exchange and affinity chromatography from etiolated shoots of the diploid wheat species T. tauschii (a progenitor of hexaploid wheat) treated with the herbicide safener cloquintocet-mexyl. The isozyme bound to a dimethenamid-affinity column and had a subunit molecular mass of 26 kD based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme (designated GST TSI-1) was recognized by an antiserum raised against a mixture of maize (Zea mays) GSTs. Amino acid sequences obtained from protease-digested GST TSI-1 had significant homology with the safener-inducible maize GST V and two auxin-regulated tobacco (Nicotiana tabacum) GST isozymes.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Dean J. V., Devarenne T. P., Lee I. S., Orlofsky L. E. Properties of a Maize Glutathione S-Transferase That Conjugates Coumaric Acid and Other Phenylpropanoids. Plant Physiol. 1995 Jul;108(3):985–994. doi: 10.1104/pp.108.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dean J. V., Gronwald J. W., Eberlein C. V. Induction of glutathione s-transferase isozymes in sorghum by herbicide antidotes. Plant Physiol. 1990 Feb;92(2):467–473. doi: 10.1104/pp.92.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Droog F. N., Hooykaas P. J., Libbenga K. R., van der Zaal E. J. Proteins encoded by an auxin-regulated gene family of tobacco share limited but significant homology with glutathione S-transferases and one member indeed shows in vitro GST activity. Plant Mol Biol. 1993 Mar;21(6):965–972. doi: 10.1007/BF00023595. [DOI] [PubMed] [Google Scholar]
  5. Droog FNJ., Hooykaas PJJ., Van Der Zaal B. J. 2,4-Dichlorophenoxyacetic Acid and Related Chlorinated Compounds Inhibit Two Auxin-Regulated Type-III Tobacco Glutathione S-Transferases. Plant Physiol. 1995 Apr;107(4):1139–1146. doi: 10.1104/pp.107.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dudler R., Hertig C., Rebmann G., Bull J., Mauch F. A pathogen-induced wheat gene encodes a protein homologous to glutathione-S-transferases. Mol Plant Microbe Interact. 1991 Jan-Feb;4(1):14–18. doi: 10.1094/mpmi-4-014. [DOI] [PubMed] [Google Scholar]
  7. Flury T., Wagner E., Kreuz K. An Inducible Glutathione S-Transferase in Soybean Hypocotyl Is Localized in the Apoplast. Plant Physiol. 1996 Nov;112(3):1185–1190. doi: 10.1104/pp.112.3.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fuerst E. P., Irzyk G. P., Miller K. D. Partial Characterization of Glutathione S-Transferase Isozymes Induced by the Herbicide Safener Benoxacor in Maize. Plant Physiol. 1993 Jul;102(3):795–802. doi: 10.1104/pp.102.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Godfried M. H., Romijn J. A., van der Poll T., Weverling G. J., Corssmit E. P., Endert E., Eeftinck Schattenkerk J. K., Sauerwein H. P. Soluble receptors for tumor necrosis factor are markers for clinical course but not for major metabolic changes in human immunodeficiency virus infection. Metabolism. 1995 Dec;44(12):1564–1569. doi: 10.1016/0026-0495(95)90076-4. [DOI] [PubMed] [Google Scholar]
  10. Grove G., Zarlengo R. P., Timmerman K. P., Li N. Q., Tam M. F., Tu C. P. Characterization and heterospecific expression of cDNA clones of genes in the maize GSH S-transferase multigene family. Nucleic Acids Res. 1988 Jan 25;16(2):425–438. doi: 10.1093/nar/16.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
  12. Irzyk G. P., Fuerst E. P. Purification and characterization of a glutathione S-transferase from benoxacor-treated maize (Zea mays). Plant Physiol. 1993 Jul;102(3):803–810. doi: 10.1104/pp.102.3.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Irzyk G., Potter S., Ward E., Fuerst E. P. A cDNA clone encoding the 27-kilodalton subunits of glutathione S-transferase IV from Zea mays. Plant Physiol. 1995 Jan;107(1):311–312. doi: 10.1104/pp.107.1.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jepson I., Lay V. J., Holt D. C., Bright S. W., Greenland A. J. Cloning and characterization of maize herbicide safener-induced cDNAs encoding subunits of glutathione S-transferase isoforms I, II and IV. Plant Mol Biol. 1994 Dec;26(6):1855–1866. doi: 10.1007/BF00019498. [DOI] [PubMed] [Google Scholar]
  15. Kreuz K., Tommasini R., Martinoia E. Old Enzymes for a New Job (Herbicide Detoxification in Plants). Plant Physiol. 1996 Jun;111(2):349–353. doi: 10.1104/pp.111.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Li Z. S., Alfenito M., Rea P. A., Walbot V., Dixon R. A. Vacuolar uptake of the phytoalexin medicarpin by the glutathione conjugate pump. Phytochemistry. 1997 Jun;45(4):689–693. doi: 10.1016/s0031-9422(97)00031-9. [DOI] [PubMed] [Google Scholar]
  18. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  19. Rabilloud T., Carpentier G., Tarroux P. Improvement and simplification of low-background silver staining of proteins by using sodium dithionite. Electrophoresis. 1988 Jun;9(6):288–291. doi: 10.1002/elps.1150090608. [DOI] [PubMed] [Google Scholar]
  20. Roberts J. C., Francetic D. J. The importance of sample preparation and storage in glutathione analysis. Anal Biochem. 1993 Jun;211(2):183–187. doi: 10.1006/abio.1993.1254. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES