Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Aug;114(4):1511–1521. doi: 10.1104/pp.114.4.1511

Inositol 1,4,5-trisphosphate-sensitive Ca2+ release across nonvacuolar membranes in cauliflower.

S R Muir 1, D Sanders 1
PMCID: PMC158445  PMID: 9276959

Abstract

Previous studies have indicated that the vacuole represents the major inositol 1,4,5-trisphosphate (InsP3)-mobilizable Ca2+ pool in higher plants. This findings is in contrast to animal cells, in which the endoplasmic reticulum and plasma membrane constitute the dominant InsP3-sensitive membranes. We used membrane vesicles prepared from cauliflower (Brassica oleracae L.) inflorescences that were separated on continuous sucrose gradients to demonstrate that cauliflower possesses at least two distinct membrane populations that are sensitive to InsP3. One of these membrane populations in nonvacuolar in origin and relies upon a Ca(2+)-ATPase to accumulate Ca2+. In addition, we have shown that two polyclonal antibodies, raised against peptides corresponding to the animal type 1 InsP3 receptor, recognize immunologically related proteins in cauliflower, and that the distribution of immunoreactive proteins on a linear sucrose gradient reinforces the notion that cauliflower contains more than one membrane subtype that is sensitive to InsP3. To our knowledge, this is the first report describing an InsP3-sensitive Ca2+ store other than the vacuole in higher plant cells.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen G. J., Muir S. R., Sanders D. Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose. Science. 1995 May 5;268(5211):735–737. doi: 10.1126/science.7732384. [DOI] [PubMed] [Google Scholar]
  2. Askerlund P., Evans D. E. Reconstitution and Characterization of a Calmodulin-Stimulated Ca-Pumping ATPase Purified from Brassica oleracea L. Plant Physiol. 1992 Dec;100(4):1670–1681. doi: 10.1104/pp.100.4.1670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  4. Blatt M. R., Thiel G., Trentham D. R. Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-trisphosphate. Nature. 1990 Aug 23;346(6286):766–769. doi: 10.1038/346766a0. [DOI] [PubMed] [Google Scholar]
  5. Brosnan J. M., Sanders D. Identification and Characterization of High-Affinity Binding Sites for Inositol Trisphosphate in Red Beet. Plant Cell. 1993 Aug;5(8):931–940. doi: 10.1105/tpc.5.8.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cosgrove D. J., Hedrich R. Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta. 1991 Dec;186(1):143–153. doi: 10.1007/BF00201510. [DOI] [PubMed] [Google Scholar]
  7. Dean W. L., Quinton T. M. Distribution of plasma membrane Ca(2+)-ATPase and inositol 1,4,5-trisphosphate receptor in human platelet membranes. Cell Calcium. 1995 Jan;17(1):65–70. doi: 10.1016/0143-4160(95)90103-5. [DOI] [PubMed] [Google Scholar]
  8. Dozolme P., Marty-Mazars D., Clémencet M. C., Marty F. Monoclonal antibody TeM 106 reacts with a tonoplast intrinsic protein of 106 kDa from Brassica oleracea L. J Cell Sci. 1995 Apr;108(Pt 4):1509–1517. doi: 10.1242/jcs.108.4.1509. [DOI] [PubMed] [Google Scholar]
  9. Drobak B. K. Plant Phosphoinositides and Intracellular Signaling. Plant Physiol. 1993 Jul;102(3):705–709. doi: 10.1104/pp.102.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Franklin-Tong V. E., Drobak B. K., Allan A. C., Watkins PAC., Trewavas A. J. Growth of Pollen Tubes of Papaver rhoeas Is Regulated by a Slow-Moving Calcium Wave Propagated by Inositol 1,4,5-Trisphosphate. Plant Cell. 1996 Aug;8(8):1305–1321. doi: 10.1105/tpc.8.8.1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gill D. L. Calcium signalling: receptor kinships revealed. Nature. 1989 Nov 2;342(6245):16–18. doi: 10.1038/342016a0. [DOI] [PubMed] [Google Scholar]
  12. Gilroy S., Read N. D., Trewavas A. J. Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature. 1990 Aug 23;346(6286):769–771. doi: 10.1038/346769a0. [DOI] [PubMed] [Google Scholar]
  13. Kim H. Y., Cote G. G., Crain R. C. Inositol 1,4,5-trisphosphate may mediate closure of K+ channels by light and darkness in Samanea saman motor cells. Planta. 1996 Feb;198(2):279–287. doi: 10.1007/BF00206254. [DOI] [PubMed] [Google Scholar]
  14. Klüsener B., Boheim G., Liss H., Engelberth J., Weiler E. W. Gadolinium-sensitive, voltage-dependent calcium release channels in the endoplasmic reticulum of a higher plant mechanoreceptor organ. EMBO J. 1995 Jun 15;14(12):2708–2714. doi: 10.1002/j.1460-2075.1995.tb07271.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Knight H., Trewavas A. J., Knight M. R. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell. 1996 Mar;8(3):489–503. doi: 10.1105/tpc.8.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knight M. R., Campbell A. K., Smith S. M., Trewavas A. J. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature. 1991 Aug 8;352(6335):524–526. doi: 10.1038/352524a0. [DOI] [PubMed] [Google Scholar]
  17. Knight M. R., Smith S. M., Trewavas A. J. Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4967–4971. doi: 10.1073/pnas.89.11.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lew R. R., Briskin D. P., Wyse R. E. Ca uptake by endoplasmic reticulum from zucchini hypocotyls : the use of chlorotetracycline as a probe for ca uptake. Plant Physiol. 1986 Sep;82(1):47–53. doi: 10.1104/pp.82.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lièvremont J. P., Hill A. M., Hilly M., Mauger J. P. The inositol 1,4,5-trisphosphate receptor is localized on specialized sub-regions of the endoplasmic reticulum in rat liver. Biochem J. 1994 Jun 1;300(Pt 2):419–427. doi: 10.1042/bj3000419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lytton J., Nigam S. K. Intracellular calcium: molecules and pools. Curr Opin Cell Biol. 1992 Apr;4(2):220–226. doi: 10.1016/0955-0674(92)90036-c. [DOI] [PubMed] [Google Scholar]
  22. Mayrleitner M., Schäfer R., Fleischer S. IP3 receptor purified from liver plasma membrane is an (1,4,5)IP3 activated and (1,3,4,5)IP4 inhibited calcium permeable ion channel. Cell Calcium. 1995 Feb;17(2):141–153. doi: 10.1016/0143-4160(95)90083-7. [DOI] [PubMed] [Google Scholar]
  23. Mignery G. A., Südhof T. C., Takei K., De Camilli P. Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature. 1989 Nov 9;342(6246):192–195. doi: 10.1038/342192a0. [DOI] [PubMed] [Google Scholar]
  24. Nahorski S. R., Potter B. V. Molecular recognition of inositol polyphosphates by intracellular receptors and metabolic enzymes. Trends Pharmacol Sci. 1989 Apr;10(4):139–144. doi: 10.1016/0165-6147(89)90165-x. [DOI] [PubMed] [Google Scholar]
  25. Palmgren M. G., Sommarin M., Ulvskov P., Larsson C. Effect of detergents on the H(+)-ATPase activity of inside-out and right-side-out plant plasma membrane vesicles. Biochim Biophys Acta. 1990 Jan 29;1021(2):133–140. doi: 10.1016/0005-2736(90)90025-j. [DOI] [PubMed] [Google Scholar]
  26. Rossier M. F., Bird G. S., Putney J. W., Jr Subcellular distribution of the calcium-storing inositol 1,4,5-trisphosphate-sensitive organelle in rat liver. Possible linkage to the plasma membrane through the actin microfilaments. Biochem J. 1991 Mar 15;274(Pt 3):643–650. doi: 10.1042/bj2740643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Scanlon C. H., Martinec J., Machackova I., Rolph C. E., Lumsden P. J. Identification and Preliminary Characterization of a Ca2+- Dependent High-Affinity Binding Site for Inositol-1,4,5-Trisphosphate from Chenopodium rubrum. Plant Physiol. 1996 Mar;110(3):867–874. doi: 10.1104/pp.110.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schumaker K. S., Sze H. Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of oat roots. J Biol Chem. 1987 Mar 25;262(9):3944–3946. [PubMed] [Google Scholar]
  29. Thiel G., MacRobbie E. A., Hanke D. E. Raising the intracellular level of inositol 1,4,5-trisphosphate changes plasma membrane ion transport in characean algae. EMBO J. 1990 Jun;9(6):1737–1741. doi: 10.1002/j.1460-2075.1990.tb08297.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thuleau P., Ward J. M., Ranjeva R., Schroeder J. I. Voltage-dependent calcium-permeable channels in the plasma membrane of a higher plant cell. EMBO J. 1994 Jul 1;13(13):2970–2975. doi: 10.1002/j.1460-2075.1994.tb06595.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Walton T. J., Cooke C. J., Newton R. P., Smith C. J. Evidence that generation of inositol 1,4,5-trisphosphate and hydrolysis of phosphatidylinositol 4,5-bisphosphate are rapid responses following addition of fungal elicitor which induces phytoalexin synthesis in lucerne (Medicago sativa) suspension culture cells. Cell Signal. 1993 May;5(3):345–356. doi: 10.1016/0898-6568(93)90026-i. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES