Abstract
Pectin methylesterase (PME), a ubiquitous enzyme in plants, de-esterifies the methoxylated pectin in the plant cell wall. We have characterized a PME gene (designated as pmeu1) from tomato (Lycopersicon esculentum) with an expression that is higher in younger root, leaf, and fruit tissues than in older tissues. Hypocotyls and epicotyls show higher accumulation of pmeu1 transcripts compared with cotyledons. pmeu1 represents a single-copy gene in the tomato genome. Comparison of the deduced amino acid sequence of pmeu1 with other PME homologs showed that the N-terminal halves are highly variable, and the C-terminal halves are relatively conserved in plant PMEs. Constitutive expression of a fruit-specific PME antisense gene does not affect the level of pmeu1 transcripts in vegetative tissues but does lower the level of PMEU1 mRNA in developing tomato fruits. These results suggest that there exists developmentally regulated silencing of pmeu1 by a heterologous PME antisense gene. Expression of pmeu1 in tobacco (Nicotiana tabacum) under the control of the cauliflower mosaic virus 35S promoter caused up to a 4-fold increase in PME specific activity that was correlated with the accumulation of PMEU1 mRNA. In vitro transcription-translation analyses show that pmeu1 encodes a 64-kD polypeptide, whereas transgenic tobacco plants expressing pmeu1 accumulate a new 37-kD polypeptide, suggesting extensive posttranslational processing of PMEU1. These results are the first evidence, to our knowledge, of the functional characterization of a PME gene and the extensive modification of the encoded polypeptide.
Full Text
The Full Text of this article is available as a PDF (2.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- A simple and general method for transferring genes into plants. Science. 1985 Mar 8;227(4691):1229–1231. doi: 10.1126/science.227.4691.1229. [DOI] [PubMed] [Google Scholar]
- Albani D., Altosaar I., Arnison P. G., Fabijanski S. F. A gene showing sequence similarity to pectin esterase is specifically expressed in developing pollen of Brassica napus. Sequences in its 5' flanking region are conserved in other pollen-specific promoters. Plant Mol Biol. 1991 Apr;16(4):501–513. doi: 10.1007/BF00023417. [DOI] [PubMed] [Google Scholar]
- Carpita N., McCann M., Griffing L. R. The plant extracellular matrix: news from the cell's frontier. Plant Cell. 1996 Sep;8(9):1451–1463. doi: 10.1105/tpc.8.9.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Funamoto S., Ochiai H. Antisense RNA inactivation of gene expression of a cell-cell adhesion protein (gp64) in the cellular slime mold Polysphondylium pallidum. J Cell Sci. 1996 May;109(Pt 5):1009–1016. doi: 10.1242/jcs.109.5.1009. [DOI] [PubMed] [Google Scholar]
- Harriman R. W., Tieman D. M., Handa A. K. Molecular cloning of tomato pectin methylesterase gene and its expression in rutgers, ripening inhibitor, nonripening, and never ripe tomato fruits. Plant Physiol. 1991 Sep;97(1):80–87. doi: 10.1104/pp.97.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hebert D. N., Foellmer B., Helenius A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell. 1995 May 5;81(3):425–433. doi: 10.1016/0092-8674(95)90395-x. [DOI] [PubMed] [Google Scholar]
- Karpen G. H. Position-effect variegation and the new biology of heterochromatin. Curr Opin Genet Dev. 1994 Apr;4(2):281–291. doi: 10.1016/s0959-437x(05)80055-3. [DOI] [PubMed] [Google Scholar]
- Kim J. B., Carpita N. C. Changes in Esterification of the Uronic Acid Groups of Cell Wall Polysaccharides during Elongation of Maize Coleoptiles. Plant Physiol. 1992 Feb;98(2):646–653. doi: 10.1104/pp.98.2.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lietzke S. E., Yoder M. D., Keen N. T., Jurnak F. The Three-Dimensional Structure of Pectate Lyase E, a Plant Virulence Factor from Erwinia chrysanthemi. Plant Physiol. 1994 Nov;106(3):849–862. doi: 10.1104/pp.106.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macadam J. W., Nelson C. J., Sharp R. E. Peroxidase activity in the leaf elongation zone of tall fescue : I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiol. 1992 Jul;99(3):872–878. doi: 10.1104/pp.99.3.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markovic O., Jörnvall H. Pectinesterase. The primary structure of the tomato enzyme. Eur J Biochem. 1986 Aug 1;158(3):455–462. doi: 10.1111/j.1432-1033.1986.tb09775.x. [DOI] [PubMed] [Google Scholar]
- Mu J. H., Stains J. P., Kao T. Characterization of a pollen-expressed gene encoding a putative pectin esterase of Petunia inflata. Plant Mol Biol. 1994 Jun;25(3):539–544. doi: 10.1007/BF00043881. [DOI] [PubMed] [Google Scholar]
- Nari J., Noat G., Ricard J. Pectin methylesterase, metal ions and plant cell-wall extension. Hydrolysis of pectin by plant cell-wall pectin methylesterase. Biochem J. 1991 Oct 15;279(Pt 2):343–350. doi: 10.1042/bj2790343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nellen W., Sczakiel G. In vitro and in vivo action of antisense RNA. Mol Biotechnol. 1996 Aug;6(1):7–15. doi: 10.1007/BF02762319. [DOI] [PubMed] [Google Scholar]
- Plastow G. S. Molecular cloning and nucleotide sequence of the pectin methyl esterase gene of Erwinia chrysanthemi B374. Mol Microbiol. 1988 Mar;2(2):247–254. doi: 10.1111/j.1365-2958.1988.tb00026.x. [DOI] [PubMed] [Google Scholar]
- Pressey R., Woods F. M. Purification and properties of two pectinesterases from tomatoes. Phytochemistry. 1992 Apr;31(4):1139–1142. doi: 10.1016/0031-9422(92)80248-d. [DOI] [PubMed] [Google Scholar]
- Raghothama K. G., Lawton K. A., Goldsbrough P. B., Woodson W. R. Characterization of an ethylene-regulated flower senescence-related gene from carnation. Plant Mol Biol. 1991 Jul;17(1):61–71. doi: 10.1007/BF00036806. [DOI] [PubMed] [Google Scholar]
- Ray J., Knapp J., Grierson D., Bird C., Schuch W. Identification and sequence determination of a cDNA clone for tomato pectin esterase. Eur J Biochem. 1988 May 16;174(1):119–124. doi: 10.1111/j.1432-1033.1988.tb14070.x. [DOI] [PubMed] [Google Scholar]
- Richard L., Qin L. X., Gadal P., Goldberg R. Molecular cloning and characterisation of a putative pectin methylesterase cDNA in Arabidopsis thaliana (L.). FEBS Lett. 1994 Nov 28;355(2):135–139. doi: 10.1016/0014-5793(94)01187-7. [DOI] [PubMed] [Google Scholar]
- Richard L., Qin L. X., Goldberg R. Clustered genes within the genome of Arabidopsis thaliana encoding pectin methylesterase-like enzymes. Gene. 1996 May 8;170(2):207–211. doi: 10.1016/0378-1119(95)00766-0. [DOI] [PubMed] [Google Scholar]
- Sadiq M., Hildebrandt M., Maniak M., Nellen W. Developmental regulation of antisense-mediated gene silencing in Dictyostelium. Antisense Res Dev. 1994 Winter;4(4):263–267. doi: 10.1089/ard.1994.4.263. [DOI] [PubMed] [Google Scholar]
- Schardl C. L., Byrd A. D., Benzion G., Altschuler M. A., Hildebrand D. F., Hunt A. G. Design and construction of a versatile system for the expression of foreign genes in plants. Gene. 1987;61(1):1–11. doi: 10.1016/0378-1119(87)90359-3. [DOI] [PubMed] [Google Scholar]
- Shedletzky E., Shmuel M., Delmer D. P., Lamport D. T. Adaptation and growth of tomato cells on the herbicide 2,6-dichlorobenzonitrile leads to production of unique cell walls virtually lacking a cellulose-xyloglucan network. Plant Physiol. 1990 Nov;94(3):980–987. doi: 10.1104/pp.94.3.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephenson M. B., Hawes M. C. Correlation of Pectin Methylesterase Activity in Root Caps of Pea with Root Border Cell Separation. Plant Physiol. 1994 Oct;106(2):739–745. doi: 10.1104/pp.106.2.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tieman D. M., Handa A. K. Reduction in Pectin Methylesterase Activity Modifies Tissue Integrity and Cation Levels in Ripening Tomato (Lycopersicon esculentum Mill.) Fruits. Plant Physiol. 1994 Oct;106(2):429–436. doi: 10.1104/pp.106.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tieman D. M., Harriman R. W., Ramamohan G., Handa A. K. An Antisense Pectin Methylesterase Gene Alters Pectin Chemistry and Soluble Solids in Tomato Fruit. Plant Cell. 1992 Jun;4(6):667–679. doi: 10.1105/tpc.4.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Visser R. G., Somhorst I., Kuipers G. J., Ruys N. J., Feenstra W. J., Jacobsen E. Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Mol Gen Genet. 1991 Feb;225(2):289–296. doi: 10.1007/BF00269861. [DOI] [PubMed] [Google Scholar]
- von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Heijne G., Gavel Y. Topogenic signals in integral membrane proteins. Eur J Biochem. 1988 Jul 1;174(4):671–678. doi: 10.1111/j.1432-1033.1988.tb14150.x. [DOI] [PubMed] [Google Scholar]