Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Sep;115(1):41–50. doi: 10.1104/pp.115.1.41

Reduced Lignin Content and Altered Lignin Composition in Transgenic Tobacco Down-Regulated in Expression of L-Phenylalanine Ammonia-Lyase or Cinnamate 4-Hydroxylase.

VJH Sewalt 1, W Ni 1, J W Blount 1, H G Jung 1, S A Masoud 1, P A Howles 1, C Lamb 1, R A Dixon 1
PMCID: PMC158458  PMID: 12223790

Abstract

We analyzed lignin content and composition in transgenic tobacco (Nicotiana tabacum) lines altered in the expression of the early phenylpropanoid biosynthetic enzymes L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase (C4H). The reduction of C4H activity by antisense expression or sense suppression resulted in reduced levels of Klason lignin, accompanied by a decreased syringyl/guaiacyl monomer ratio as determined by pyrolysis gas chromatography/mass spectrometry Similar reduction of lignin levels by down -regulation of L-phenylalanine ammonia-lyase, the enzyme preceding C4H in the central phenylpropanoid pathway, did not result in a decreased syringyl/guaiacyl ratio. Rather, analysis of lignin methoxyl content and pyrolysis suggested an increased syringyl/guaiacyl ratio. One possible explanation of these results is that monolignol biosynthesis from L-phenylalanine might occur by more than one route, even at the early stages of the core phenylpropanoid pathway, prior to the formation of specific monolignol precursors.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Campbell M. M., Sederoff R. R. Variation in Lignin Content and Composition (Mechanisms of Control and Implications for the Genetic Improvement of Plants). Plant Physiol. 1996 Jan;110(1):3–13. doi: 10.1104/pp.110.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dwivedi U. N., Campbell W. H., Yu J., Datla R. S., Bugos R. C., Chiang V. L., Podila G. K. Modification of lignin biosynthesis in transgenic Nicotiana through expression of an antisense O-methyltransferase gene from Populus. Plant Mol Biol. 1994 Oct;26(1):61–71. doi: 10.1007/BF00039520. [DOI] [PubMed] [Google Scholar]
  3. Elkind Y., Edwards R., Mavandad M., Hedrick S. A., Ribak O., Dixon R. A., Lamb C. J. Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc Natl Acad Sci U S A. 1990 Nov;87(22):9057–9061. doi: 10.1073/pnas.87.22.9057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fukasawa-Akada T., Kung S. D., Watson J. C. Phenylalanine ammonia-lyase gene structure, expression, and evolution in Nicotiana. Plant Mol Biol. 1996 Feb;30(4):711–722. doi: 10.1007/BF00019006. [DOI] [PubMed] [Google Scholar]
  5. Howles P. A., Sewalt VJH., Paiva N. L., Elkind Y., Bate N. J., Lamb C., Dixon R. A. Overexpression of L-Phenylalanine Ammonia-Lyase in Transgenic Tobacco Plants Reveals Control Points for Flux into Phenylpropanoid Biosynthesis. Plant Physiol. 1996 Dec;112(4):1617–1624. doi: 10.1104/pp.112.4.1617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hrazdina G., Wagner G. J. Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Arch Biochem Biophys. 1985 Feb 15;237(1):88–100. doi: 10.1016/0003-9861(85)90257-7. [DOI] [PubMed] [Google Scholar]
  7. Jones J. D., Henstrand J. M., Handa A. K., Herrmann K. M., Weller S. C. Impaired Wound Induction of 3-Deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) Synthase and Altered Stem Development in Transgenic Potato Plants Expressing a DAHP Synthase Antisense Construct. Plant Physiol. 1995 Aug;108(4):1413–1421. doi: 10.1104/pp.108.4.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Maher E. A., Bate N. J., Ni W., Elkind Y., Dixon R. A., Lamb C. J. Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7802–7806. doi: 10.1073/pnas.91.16.7802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rösler J., Krekel F., Amrhein N., Schmid J. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol. 1997 Jan;113(1):175–179. doi: 10.1104/pp.113.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Van Soest P. J., Robertson J. B., Lewis B. A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991 Oct;74(10):3583–3597. doi: 10.3168/jds.S0022-0302(91)78551-2. [DOI] [PubMed] [Google Scholar]
  11. Vignols F., Rigau J., Torres M. A., Capellades M., Puigdomènech P. The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell. 1995 Apr;7(4):407–416. doi: 10.1105/tpc.7.4.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Vijayagopal P., Figueroa J. E., Fontenot J. D., Glancy D. L. Isolation and characterization of a proteoglycan variant from human aorta exhibiting a marked affinity for low density lipoprotein and demonstration of its enhanced expression in atherosclerotic plaques. Atherosclerosis. 1996 Dec 20;127(2):195–203. doi: 10.1016/s0021-9150(96)05954-0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES