Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Sep;115(1):71–77. doi: 10.1104/pp.115.1.71

Purification and in vitro chaperone activity of a class I small heat-shock protein abundant in recalcitrant chestnut seeds.

C Collada 1, L Gomez 1, R Casado 1, C Aragoncillo 1
PMCID: PMC158461  PMID: 9306691

Abstract

A 20-kD protein has been purified from cotyledons of recalcitrant (desiccation-sensitive) chestnut (Castanea sativa) seeds, where it accumulates at levels comparable to those of major seed storage proteins. This protein, termed Cs smHSP 1, forms homododecameric complexes under nondenaturing conditions and appears to be homologous to cytosolic class I small heat-shock proteins (smHSPs) from plant sources. In vitro evidence has been obtained that the isolated protein can function as a molecular chaperone; it increases, at stoichiometric levels, the renaturation yields of chemically denatured citrate synthase and also prevents the irreversible thermal inactivation of this enzyme. Although a role in desiccation tolerance has been hypothesized for seed smHSPs, this does not seem to be the case for Cs smHSP 1. We have investigated the presence of immunologically related proteins in orthodox and recalcitrant seeds of 13 woody species. Our results indicate that the presence of Cs smHSP 1-like proteins, even at high levels, is not enough to confer desiccation tolerance, and that the amount of these proteins does not furnish a reliable criterion to identify desiccation-sensitive seeds. Additional proteins or mechanisms appear necessary to keep the viability of orthodox seeds upon shedding.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allona I., Collada C., Casado R., Paz-Ares J., Aragoncillo C. Bacterial expression of an active class Ib chitinase from Castanea sativa cotyledons. Plant Mol Biol. 1996 Dec;32(6):1171–1176. doi: 10.1007/BF00041402. [DOI] [PubMed] [Google Scholar]
  2. Coca M. A., Almoguera C., Jordano J. Expression of sunflower low-molecular-weight heat-shock proteins during embryogenesis and persistence after germination: localization and possible functional implications. Plant Mol Biol. 1994 Jun;25(3):479–492. doi: 10.1007/BF00043876. [DOI] [PubMed] [Google Scholar]
  3. Coca M. A., Almoguera C., Thomas T. L., Jordano J. Differential regulation of small heat-shock genes in plants: analysis of a water-stress-inducible and developmentally activated sunflower promoter. Plant Mol Biol. 1996 Jul;31(4):863–876. doi: 10.1007/BF00019473. [DOI] [PubMed] [Google Scholar]
  4. Collada C., Casado R., Fraile A., Aragoncillo C. Basic Endochitinases Are Major Proteins in Castanea sativa Cotyledons. Plant Physiol. 1992 Oct;100(2):778–783. doi: 10.1104/pp.100.2.778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Helm K. W., LaFayette P. R., Nagao R. T., Key J. L., Vierling E. Localization of small heat shock proteins to the higher plant endomembrane system. Mol Cell Biol. 1993 Jan;13(1):238–247. doi: 10.1128/mcb.13.1.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Helm K. W., Schmeits J., Vierling E. An endomembrane-localized small heat-shock protein from Arabidopsis thaliana. Plant Physiol. 1995 Jan;107(1):287–288. doi: 10.1104/pp.107.1.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Horwitz J. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10449–10453. doi: 10.1073/pnas.89.21.10449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jakob U., Gaestel M., Engel K., Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem. 1993 Jan 25;268(3):1517–1520. [PubMed] [Google Scholar]
  9. Jinn T. L., Chen Y. M., Lin C. Y. Characterization and Physiological Function of Class I Low-Molecular-Mass, Heat-Shock Protein Complex in Soybean. Plant Physiol. 1995 Jun;108(2):693–701. doi: 10.1104/pp.108.2.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Lee G. J., Pokala N., Vierling E. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem. 1995 May 5;270(18):10432–10438. doi: 10.1074/jbc.270.18.10432. [DOI] [PubMed] [Google Scholar]
  12. Osteryoung K. W., Vierling E. Dynamics of small heat shock protein distribution within the chloroplasts of higher plants. J Biol Chem. 1994 Nov 18;269(46):28676–28682. [PubMed] [Google Scholar]
  13. Park S. Y., Shivaji R., Krans J. V., Luthe D. S. Heat-Shock Response in Heat-Tolerant and Nontolerant Variants of Agrostis palustris Huds. Plant Physiol. 1996 Jun;111(2):515–524. doi: 10.1104/pp.111.2.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Prändl R., Schöffl F. Heat shock elements are involved in heat shock promoter activation during tobacco seed maturation. Plant Mol Biol. 1996 Apr;31(1):157–162. doi: 10.1007/BF00020615. [DOI] [PubMed] [Google Scholar]
  15. Sabehat A., Weiss D., Lurie S. The correlation between heat-shock protein accumulation and persistence and chilling tolerance in tomato fruit. Plant Physiol. 1996 Feb;110(2):531–537. doi: 10.1104/pp.110.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tardieu A., Laporte D., Licinio P., Krop B., Delaye M. Calf lens alpha-crystallin quaternary structure. A three-layer tetrahedral model. J Mol Biol. 1986 Dec 20;192(4):711–724. doi: 10.1016/0022-2836(86)90023-9. [DOI] [PubMed] [Google Scholar]
  17. Waters E. R. The molecular evolution of the small heat-shock proteins in plants. Genetics. 1995 Oct;141(2):785–795. doi: 10.1093/genetics/141.2.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wehmeyer N., Hernandez L. D., Finkelstein R. R., Vierling E. Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol. 1996 Oct;112(2):747–757. doi: 10.1104/pp.112.2.747. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES