Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Sep;115(1):79–85. doi: 10.1104/pp.115.1.79

Photoresponses of transgenic Arabidopsis overexpressing the fern Adiantum capillus-veneris PHY1.

H Okamoto 1, K Sakamoto 1, K I Tomizawa 1, A Nagatani 1, M Wada 1
PMCID: PMC158462  PMID: 9306692

Abstract

The phytochrome gene (PHY1) cDNA from the fern Adiantum capillus-veneris encodes an amino acid sequence that shows equal similarity (50-60%) to all five Arabidopsis phytochromes (PHYA-E). The A. capillus-veneris PHY1 cDNA was transformed into Arabidopsis ecotype Landsberg erecta to investigate its activity in angiosperms. Three of the resulting lines contained at least 8 times more spectrally active phytochrome than the wild type, indicating that A. capillus-veneris phytochrome can incorporate the chromophore of the host plants. Hypocotyl growth inhibition of these transgenic lines was investigated under red and far-red light. The results indicated dominant negative activity of A. capillus-veneris phy1 on the phytochrome A response in the host plants under continuous far-red light. However, the fern phytochrome did not interfere with the red-light repression of hypocotyl growth mediated by endogenous phytochrome B, and it failed to complement a phyB mutant phenotype. These observations suggest that the phy1 phytochrome molecule is too diverged from those of Arabidopsis to be fully functional.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boylan M. T., Quail P. H. Oat Phytochrome Is Biologically Active in Transgenic Tomatoes. Plant Cell. 1989 Aug;1(8):765–773. doi: 10.1105/tpc.1.8.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boylan M. T., Quail P. H. Phytochrome a overexpression inhibits hypocotyl elongation in transgenic Arabidopsis. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10806–10810. doi: 10.1073/pnas.88.23.10806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boylan M., Douglas N., Quail P. H. Dominant negative suppression of arabidopsis photoresponses by mutant phytochrome A sequences identifies spatially discrete regulatory domains in the photoreceptor. Plant Cell. 1994 Mar;6(3):449–460. doi: 10.1105/tpc.6.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Chory J., Peto C. A., Ashbaugh M., Saganich R., Pratt L., Ausubel F. Different Roles for Phytochrome in Etiolated and Green Plants Deduced from Characterization of Arabidopsis thaliana Mutants. Plant Cell. 1989 Sep;1(9):867–880. doi: 10.1105/tpc.1.9.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clough R. C., Casal J. J., Jordan E. T., Christou P., Vierstra R. D. Expression of functional oat phytochrome A in transgenic rice. Plant Physiol. 1995 Nov;109(3):1039–1045. doi: 10.1104/pp.109.3.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Emmler K., Stockhaus J., Chua N. H., Schäfer E. An amino-terminal deletion of rice phytochrome A results in a dominant negative suppression of tobacco phytochrome A activity in transgenic tobacco seedlings. Planta. 1995;197(1):103–110. doi: 10.1007/BF00239945. [DOI] [PubMed] [Google Scholar]
  8. Hanelt S., Braun B., Marx S., Schneider-Poetsch H. A. Phytochrome evolution: a phylogenetic tree with the first complete sequence of phytochrome from a cryptogamic plant (Selaginella martensii spring). Photochem Photobiol. 1992 Nov;56(5):751–758. doi: 10.1111/j.1751-1097.1992.tb02230.x. [DOI] [PubMed] [Google Scholar]
  9. Hershey H. P., Barker R. F., Idler K. B., Lissemore J. L., Quail P. H. Analysis of cloned cDNA and genomic sequences for phytochrome: complete amino acid sequences for two gene products expressed in etiolated Avena. Nucleic Acids Res. 1985 Dec 9;13(23):8543–8559. doi: 10.1093/nar/13.23.8543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kay S. A., Nagatani A., Keith B., Deak M., Furuya M., Chua N. H. Rice Phytochrome Is Biologically Active in Transgenic Tobacco. Plant Cell. 1989 Aug;1(8):775–782. doi: 10.1105/tpc.1.8.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Keller J. M., Shanklin J., Vierstra R. D., Hershey H. P. Expression of a functional monocotyledonous phytochrome in transgenic tobacco. EMBO J. 1989 Apr;8(4):1005–1012. doi: 10.1002/j.1460-2075.1989.tb03467.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kolukisaoglu H. U., Braun B., Martin W. F., Schneider-Poetsch H. A. Mosses do express conventional, distantly B-type-related phytochromes. Phytochrome of Physcomitrella patens (Hedw.). FEBS Lett. 1993 Nov 8;334(1):95–100. doi: 10.1016/0014-5793(93)81689-w. [DOI] [PubMed] [Google Scholar]
  13. Kolukisaoglu H. U., Marx S., Wiegmann C., Hanelt S., Schneider-Poetsch H. A. Divergence of the phytochrome gene family predates angiosperm evolution and suggests that Selaginella and Equisetum arose prior to Psilotum. J Mol Evol. 1995 Sep;41(3):329–337. [PubMed] [Google Scholar]
  14. Lagarias D. M., Wu S. H., Lagarias J. C. Atypical phytochrome gene structure in the green alga Mesotaenium caldariorum. Plant Mol Biol. 1995 Dec;29(6):1127–1142. doi: 10.1007/BF00020457. [DOI] [PubMed] [Google Scholar]
  15. Nagatani A., Kay S. A., Deak M., Chua N. H., Furuya M. Rice type I phytochrome regulates hypocotyl elongation in transgenic tobacco seedlings. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5207–5211. doi: 10.1073/pnas.88.12.5207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nagatani A., Reed J. W., Chory J. Isolation and Initial Characterization of Arabidopsis Mutants That Are Deficient in Phytochrome A. Plant Physiol. 1993 May;102(1):269–277. doi: 10.1104/pp.102.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Parks B. M., Quail P. H. Phytochrome-Deficient hy1 and hy2 Long Hypocotyl Mutants of Arabidopsis Are Defective in Phytochrome Chromophore Biosynthesis. Plant Cell. 1991 Nov;3(11):1177–1186. doi: 10.1105/tpc.3.11.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Parks B. M., Quail P. H. hy8, a new class of arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell. 1993 Jan;5(1):39–48. doi: 10.1105/tpc.5.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reed J. W., Nagpal P., Poole D. S., Furuya M., Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 1993 Feb;5(2):147–157. doi: 10.1105/tpc.5.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sakamoto K., Nagatani A. Over-expression of a C-terminal region of phytochrome B. Plant Mol Biol. 1996 Aug;31(5):1079–1082. doi: 10.1007/BF00040726. [DOI] [PubMed] [Google Scholar]
  21. Shinomura T., Nagatani A., Hanzawa H., Kubota M., Watanabe M., Furuya M. Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8129–8133. doi: 10.1073/pnas.93.15.8129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Thümmler F., Dufner M., Kreisl P., Dittrich P. Molecular cloning of a novel phytochrome gene of the moss Ceratodon purpureus which encodes a putative light-regulated protein kinase. Plant Mol Biol. 1992 Dec;20(6):1003–1017. doi: 10.1007/BF00028888. [DOI] [PubMed] [Google Scholar]
  23. Wagner D., Fairchild C. D., Kuhn R. M., Quail P. H. Chromophore-bearing NH2-terminal domains of phytochromes A and B determine their photosensory specificity and differential light lability. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4011–4015. doi: 10.1073/pnas.93.9.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wagner D., Koloszvari M., Quail P. H. Two Small Spatially Distinct Regions of Phytochrome B Are Required for Efficient Signaling Rates. Plant Cell. 1996 May;8(5):859–871. doi: 10.1105/tpc.8.5.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wagner D., Tepperman J. M., Quail P. H. Overexpression of Phytochrome B Induces a Short Hypocotyl Phenotype in Transgenic Arabidopsis. Plant Cell. 1991 Dec;3(12):1275–1288. doi: 10.1105/tpc.3.12.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weller J. L., Terry M. J., Rameau C., Reid J. B., Kendrick R. E. The Phytochrome-Deficient pcd1 Mutant of Pea Is Unable to Convert Heme to Biliverdin IX[alpha]. Plant Cell. 1996 Jan;8(1):55–67. doi: 10.1105/tpc.8.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Whitelam G. C., Johnson E., Peng J., Carol P., Anderson M. L., Cowl J. S., Harberd N. P. Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell. 1993 Jul;5(7):757–768. doi: 10.1105/tpc.5.7.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Winands A., Wagner G. Phytochrome of the green alga Mougeotia: cDNA sequence, autoregulation and phylogenetic position. Plant Mol Biol. 1996 Nov;32(4):589–597. doi: 10.1007/BF00020200. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES