Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Sep;115(1):123–128. doi: 10.1104/pp.115.1.123

Seed and Hormonal Regulation of Gibberellin 20-Oxidase Expression in Pea Pericarp.

R Van Huizen 1, J A Ozga 1, D M Reinecke 1
PMCID: PMC158467  PMID: 12223795

Abstract

To understand further how seeds, auxin (4-chloroindole-3-acetic acid [4-Cl-IAA]), and gibberellins (GAs) regulate GA biosynthesis in pea (Pisum sativum L.) pericarp at the molecular level, we studied the expression of GA 20-oxidase in this tissue using northern-blot analysis. Pericarp GA 20-oxidase mRNA levels were highest from prepollination (-2 d after anthesis [DAA]) through anthesis (0 DAA), then decreased 3-fold by 2 DAA, and remained at these levels through 6 DAA. The effects of seeds and hormones (4-Cl-IAA and GA3) on the expression of GA 20-oxidase in pea pericarp were investigated over a 36-h treatment period. GA 20-oxidase mRNA levels in 2 DAA pericarp with seeds remained relatively stable throughout the treatment period; however, when the seeds were removed the pericarp transcript levels declined. When 2 DAA deseeded pericarps were treated with 4-Cl-IAA, a significant increase in GA 20-oxidase mRNA levels was detected within 2 h and transcript levels remained elevated for up to 12 h after 4-Cl-IAA application. GA3 significantly decreased GA 20-oxidase mRNA levels in deseeded pericarp within 2 h of application. These data suggest that the previously reported conversion of GA19 to GA20 in pea pericarp is controlled by seeds, 4-Cl-IAA, and GA3 at least in part by regulating GA 20-oxidase mRNA levels in this tissue.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  2. Gillaspy G., Ben-David H., Gruissem W. Fruits: A Developmental Perspective. Plant Cell. 1993 Oct;5(10):1439–1451. doi: 10.1105/tpc.5.10.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gilmour S. J., Zeevaart J. A., Schwenen L., Graebe J. E. Gibberellin metabolism in cell-free extracts from spinach leaves in relation to photoperiod. Plant Physiol. 1986 Sep;82(1):190–195. doi: 10.1104/pp.82.1.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HOFFMANN O. L., FOX S. W., BULLOCK M. W. Auxin-like activity of systematically substituted indoleacetic acid. J Biol Chem. 1952 May;196(1):437–441. [PubMed] [Google Scholar]
  5. Lange T., Hedden P., Graebe J. E. Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8552–8556. doi: 10.1073/pnas.91.18.8552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Martin D. N., Proebsting W. M., Parks T. D., Dougherty W. G., Lange T., Lewis M. J., Gaskin P., Hedden P. Feed-back regulation of gibberellin biosynthesis and gene expression in Pisum sativum L. Planta. 1996;200(2):159–166. doi: 10.1007/BF00208304. [DOI] [PubMed] [Google Scholar]
  7. Marumo S., Hattori H., Abe H., Munakata K. Isolation of 4-chloroindolyl-3-acetic acid from immature seeds of Pisum sativum. Nature. 1968 Aug 31;219(5157):959–960. doi: 10.1038/219959b0. [DOI] [PubMed] [Google Scholar]
  8. Ozga J. A., Brenner M. L., Reinecke D. M. Seed effects on gibberellin metabolism in pea pericarp. Plant Physiol. 1992 Sep;100(1):88–94. doi: 10.1104/pp.100.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Phillips A. L., Ward D. A., Uknes S., Appleford N. E., Lange T., Huttly A. K., Gaskin P., Graebe J. E., Hedden P. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol. 1995 Jul;108(3):1049–1057. doi: 10.1104/pp.108.3.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Van Huizen R., Ozga J. A., Reinecke D. M. Influence of Auxin and Gibberellin on in Vivo Protein Synthesis during Early Pea Fruit Growth. Plant Physiol. 1996 Sep;112(1):53–59. doi: 10.1104/pp.112.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wu K., Li L., Gage D. A., Zeevaart J. A. Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach. Plant Physiol. 1996 Feb;110(2):547–554. doi: 10.1104/pp.110.2.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Xu Y. L., Li L., Wu K., Peeters A. J., Gage D. A., Zeevaart J. A. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6640–6644. doi: 10.1073/pnas.92.14.6640. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES