Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1997 Sep;115(1):171–180. doi: 10.1104/pp.115.1.171

Cold-Resistant and Cold-Sensitive Maize Lines Differ in the Phosphorylation of the Photosystem II Subunit, CP29.

S Mauro 1, P Dainese 1, R Lannoye 1, R Bassi 1
PMCID: PMC158472  PMID: 12223798

Abstract

The effects of low temperature on the relative contributions of the reaction center and the antenna activities to photosystem II (PSII) electron transport were estimated by chlorophyll fluorescence. The inhibition of PSII photochemistry resulted from photo-damage to the reaction center and/or a reduced probability of excitation energy trapping by the reaction center. Although chill treatment did not modify the proportion of the dimeric to monomeric PSII, it destabilized its main light-harvesting complex. Full protection of the reaction center was achieved only in the presence of the phosphorylated PSII subunit, CP29. In a nonphosphorylating genotype the chill treatment led to photoinhibitory damage. The phosphorylation of CP29 modified neither its binding to the PSII core nor its pigment content. Phosphorylated CP29 was isolated by flat-bed isoelectric focusing. Its spectral characteristics indicated a depletion of the chlorophyll spectral forms with the highest excitation transfer efficiency to the reaction center. It is suggested that phosphorylated CP29 performs its regulatory function by an yet undescribed mechanism based on a shift of the equilibrium for the excitation energy toward the antenna.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamska I., Ohad I., Kloppstech K. Synthesis of the early light-inducible protein is controlled by blue light and related to light stress. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2610–2613. doi: 10.1073/pnas.89.7.2610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen J. F. Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta. 1992 Jan 22;1098(3):275–335. doi: 10.1016/s0005-2728(09)91014-3. [DOI] [PubMed] [Google Scholar]
  3. Barber J., Andersson B. Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci. 1992 Feb;17(2):61–66. doi: 10.1016/0968-0004(92)90503-2. [DOI] [PubMed] [Google Scholar]
  4. Bassi R., Dainese P. A supramolecular light-harvesting complex from chloroplast photosystem-II membranes. Eur J Biochem. 1992 Feb 15;204(1):317–326. doi: 10.1111/j.1432-1033.1992.tb16640.x. [DOI] [PubMed] [Google Scholar]
  5. Bassi R., Pineau B., Dainese P., Marquardt J. Carotenoid-binding proteins of photosystem II. Eur J Biochem. 1993 Mar 1;212(2):297–303. doi: 10.1111/j.1432-1033.1993.tb17662.x. [DOI] [PubMed] [Google Scholar]
  6. Bergantino E., Dainese P., Cerovic Z., Sechi S., Bassi R. A post-translational modification of the photosystem II subunit CP29 protects maize from cold stress. J Biol Chem. 1995 Apr 14;270(15):8474–8481. doi: 10.1074/jbc.270.15.8474. [DOI] [PubMed] [Google Scholar]
  7. Burke J. J., Oliver M. J. Differential temperature sensitivity of pea superoxide dismutases. Plant Physiol. 1992 Nov;100(3):1595–1598. doi: 10.1104/pp.100.3.1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Demmig-Adams B., Winter K., Krüger A., Czygan F. C. Zeaxanthin Synthesis, Energy Dissipation, and Photoprotection of Photosystem II at Chilling Temperatures. Plant Physiol. 1989 Jul;90(3):894–898. doi: 10.1104/pp.90.3.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gilmore A. M., Yamamoto H. Y. Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1899–1903. doi: 10.1073/pnas.89.5.1899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harbinson J., Genty B., Baker N. R. Relationship between the Quantum Efficiencies of Photosystems I and II in Pea Leaves. Plant Physiol. 1989 Jul;90(3):1029–1034. doi: 10.1104/pp.90.3.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Horton P., Ruban A. V., Walters R. G. Regulation of Light Harvesting in Green Plants (Indication by Nonphotochemical Quenching of Chlorophyll Fluorescence). Plant Physiol. 1994 Oct;106(2):415–420. doi: 10.1104/pp.106.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jennings R. C., Bassi R., Garlaschi F. M., Dainese P., Zucchelli G. Distribution of the chlorophyll spectral forms in the chlorophyll-protein complexes of photosystem II antenna. Biochemistry. 1993 Apr 6;32(13):3203–3210. doi: 10.1021/bi00064a002. [DOI] [PubMed] [Google Scholar]
  13. Kettunen R., Tyystjärvi E., Aro E. M. D1 protein degradation during photoinhibition of intact leaves. A modification of the D1 protein precedes degradation. FEBS Lett. 1991 Sep 23;290(1-2):153–156. doi: 10.1016/0014-5793(91)81247-6. [DOI] [PubMed] [Google Scholar]
  14. Kirilovsky D. L., Vernotte C., Etienne A. L. Protection from photoinhibition by low temperature in Synechocystis 6714 and in Chlamydomonas reinhardtii: detection of an intermediary state. Biochemistry. 1990 Sep 4;29(35):8100–8106. doi: 10.1021/bi00487a016. [DOI] [PubMed] [Google Scholar]
  15. Maxwell D. P., Falk S., Huner NPA. Photosystem II Excitation Pressure and Development of Resistance to Photoinhibition (I. Light-Harvesting Complex II Abundance and Zeaxanthin Content in Chlorella vulgaris). Plant Physiol. 1995 Mar;107(3):687–694. doi: 10.1104/pp.107.3.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Neubauer C., Yamamoto H. Y. Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts. Plant Physiol. 1992 Aug;99(4):1354–1361. doi: 10.1104/pp.99.4.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ohad I., Adir N., Koike H., Kyle D. J., Inoue Y. Mechanism of photoinhibition in vivo. A reversible light-induced conformational change of reaction center II is related to an irreversible modification of the D1 protein. J Biol Chem. 1990 Feb 5;265(4):1972–1979. [PubMed] [Google Scholar]
  18. Peter G. F., Thornber J. P. Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J Biol Chem. 1991 Sep 5;266(25):16745–16754. [PubMed] [Google Scholar]
  19. Santini C., Tidu V., Tognon G., Ghiretti Magaldi A., Bassi R. Three-dimensional structure of the higher-plant photosystem II reaction centre and evidence for its dimeric organization in vivo. Eur J Biochem. 1994 Apr 1;221(1):307–315. doi: 10.1111/j.1432-1033.1994.tb18742.x. [DOI] [PubMed] [Google Scholar]
  20. Vass I., Styring S., Hundal T., Koivuniemi A., Aro E., Andersson B. Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1408–1412. doi: 10.1073/pnas.89.4.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES