Abstract
The role of Ca2+ in zygote polarization in fucoid algae (Fucus, Ascophyllum, and Pelvetia species) zygote polarization is controversial. Using a local source of Fucus serratus, we established that zygotes form a polar axis relative to unilateral light (photopolarization) between 8 and 14 h after fertilization (AF), and become committed to this polarity at approximately 15 to 18 h AF. We investigated the role of Ca2+, calmodulin, and actin during photopolarization by simultaneously exposing F. serratus zygotes to polarizing light and various inhibitors. Neither removal of Ca2+ from the culture medium or high concentrations of EGTA and LaCl3 had any effect on photopolarization. Bepridil, 3,4,5-trimethoxybenzoic acid 8-(diethylamino) octyl ester, nifedipine, and verapamil, all of which block intracellular Ca2 release, reduced photopolarization from 75 to 30%. The calmodulin antagonists N-(6-aminohexyl)-5-chloro-L-naphthalenesulfonamide and trifluoperazine inhibited photopolarization in all zygotes, whereas N-(6-aminohexyl)-L-naphthalenesulfonamide had no effect. Cytochalasin B, cytochalasin D, and latrunculin B, all of which inhibit actin polymerization, had no effect on photopolarization, but arrested polar axis fixation. The role of calmodulin during polarization was investigated further. Calmodulin mRNA from the closely related brown alga Macrocystis pyrifera was cloned and the protein was expressed in bacteria. Photopolarization was enhanced following microinjections of this recombinant calmodulin into developing zygotes. Confocal imaging of fluorescein isothiocyanate-labeled recombinant calmodulin in photopolarized zygotes showed a homogenous signal distribution at 13 h AF, which localized to the presumptive rhizoid site at 15 h AF.
Full Text
The Full Text of this article is available as a PDF (2.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. D., Jacobsen L., Joaquin J., Jaffe L. F. Ionic concentrations in developing Pelvetia eggs. Dev Biol. 1972 Apr;27(4):538–545. doi: 10.1016/0012-1606(72)90191-1. [DOI] [PubMed] [Google Scholar]
- Berger F., Brownlee C. Photopolarization of the Fucus sp. Zygote by Blue Light Involves a Plasma Membrane Redox Chain. Plant Physiol. 1994 Jun;105(2):519–527. doi: 10.1104/pp.105.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berger F., Brownlee C. Ratio confocal imaging of free cytoplasmic calcium gradients in polarising and polarised Fucus zygotes. Zygote. 1993 Feb;1(1):9–15. doi: 10.1017/s0967199400001246. [DOI] [PubMed] [Google Scholar]
- Brawley S. H., Roberts D. M. Calmodulin-binding proteins are developmentally regulated in gametes and embryos of fucoid algae. Dev Biol. 1989 Feb;131(2):313–320. doi: 10.1016/s0012-1606(89)80004-1. [DOI] [PubMed] [Google Scholar]
- Brawley S. H., Robinson K. R. Cytochalasin treatment disrupts the endogenous currents associated with cell polarization in fucoid zygotes: studies of the role of F-actin in embryogenesis. J Cell Biol. 1985 Apr;100(4):1173–1184. doi: 10.1083/jcb.100.4.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook W. J., Walter L. J., Walter M. R. Drug binding by calmodulin: crystal structure of a calmodulin-trifluoperazine complex. Biochemistry. 1994 Dec 27;33(51):15259–15265. doi: 10.1021/bi00255a006. [DOI] [PubMed] [Google Scholar]
- Cox J. A. Calcium-calmodulin interaction and cellular function. J Cardiovasc Pharmacol. 1986;8 (Suppl 8):S48–S51. doi: 10.1097/00005344-198600088-00010. [DOI] [PubMed] [Google Scholar]
- Gibbon B. C., Kropf D. L. Intracellular pH and its regulation in Pelvetia zygotes. Dev Biol. 1993 May;157(1):259–268. doi: 10.1006/dbio.1993.1130. [DOI] [PubMed] [Google Scholar]
- Hidaka H., Ishikawa T. Molecular pharmacology of calmodulin pathways in the cell functions. Cell Calcium. 1992 Jun-Jul;13(6-7):465–472. doi: 10.1016/0143-4160(92)90059-2. [DOI] [PubMed] [Google Scholar]
- Hidaka H., Sasaki Y., Tanaka T., Endo T., Ohno S., Fujii Y., Nagata T. N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4354–4357. doi: 10.1073/pnas.78.7.4354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaffe L. F. Electrical currents through the developing fucus egg. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1102–1109. doi: 10.1073/pnas.56.4.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaffe L. F. Localization in the developing Fucus egg and the general role of localizing currents. Adv Morphog. 1968;7:295–328. doi: 10.1016/b978-1-4831-9954-2.50012-4. [DOI] [PubMed] [Google Scholar]
- Jaffe L. F., Neuscheler W. On the mutual polarization of nearby pairs of fucaceous eggs. Dev Biol. 1969 Jun;19(6):549–565. doi: 10.1016/0012-1606(69)90037-2. [DOI] [PubMed] [Google Scholar]
- Jaffe L. F., Robinson K. R., Nuccitelli R. Local cation entry and self-electrophoresis as an intracellular localization mechanism. Ann N Y Acad Sci. 1974;238:372–389. doi: 10.1111/j.1749-6632.1974.tb26805.x. [DOI] [PubMed] [Google Scholar]
- Kropf D. L., Berge S. K., Quatrano R. S. Actin Localization during Fucus Embryogenesis. Plant Cell. 1989 Feb;1(2):191–200. doi: 10.1105/tpc.1.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kropf D. L. Establishment and expression of cellular polarity in fucoid zygotes. Microbiol Rev. 1992 Jun;56(2):316–339. doi: 10.1128/mr.56.2.316-339.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee K. S., Tsien R. W. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature. 1983 Apr 28;302(5911):790–794. doi: 10.1038/302790a0. [DOI] [PubMed] [Google Scholar]
- Malagodi M. H., Chiou C. Y. Pharmacological evaluation of a new Ca2+ antagonist, 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8): studies in smooth muscles. Eur J Pharmacol. 1974 Jun;27(1):25–33. doi: 10.1016/0014-2999(74)90198-8. [DOI] [PubMed] [Google Scholar]
- Novák B., Bentrup F. W. Orientation of Fucus egg polarity by electric a.c. and d.c. fields. Biophysik. 1973 May 30;9(3):253–260. doi: 10.1007/BF01184690. [DOI] [PubMed] [Google Scholar]
- Nuccitelli R., Jaffe L. F. Spontaneous current pulses through developing fucoid eggs. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4855–4859. doi: 10.1073/pnas.71.12.4855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nuccitelli R., Jaffe L. F. The ionic components of the current pulses generated by developing fucoid eggs. Dev Biol. 1976 Apr;49(2):518–531. doi: 10.1016/0012-1606(76)90193-7. [DOI] [PubMed] [Google Scholar]
- Nuccitelli R., Jaffe L. F. The pulse current pattern generated by developing fucoid eggs. J Cell Biol. 1975 Mar;64(3):636–643. doi: 10.1083/jcb.64.3.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohya Y., Botstein D. Diverse essential functions revealed by complementing yeast calmodulin mutants. Science. 1994 Feb 18;263(5149):963–966. doi: 10.1126/science.8310294. [DOI] [PubMed] [Google Scholar]
- Poovaiah B. W., Reddy A. S. Calcium messenger system in plants. CRC Crit Rev Plant Sci. 1987;6(1):47–103. doi: 10.1080/07352688709382247. [DOI] [PubMed] [Google Scholar]
- Quatrano R. S., Brian L., Aldridge J., Schultz T. Polar axis fixation in Fucus zygotes: components of the cytoskeleton and extracellular matrix. Dev Suppl. 1991;1:11–16. [PubMed] [Google Scholar]
- Quatrano R. S. Separation of processes associated with differentiation of two-celled Fucus embryos. Dev Biol. 1973 Jan;30(1):209–213. doi: 10.1016/0012-1606(73)90059-6. [DOI] [PubMed] [Google Scholar]
- Robinson K. R., Cone R. Polarization of fucoid eggs by a calcium ionophore gradient. Science. 1980 Jan 4;207(4426):77–78. doi: 10.1126/science.207.4426.77. [DOI] [PubMed] [Google Scholar]
- Robinson K. R., Jaffe L. F. Ion movements in a developing fucoid egg. Dev Biol. 1973 Dec;35(2):349–361. doi: 10.1016/0012-1606(73)90029-8. [DOI] [PubMed] [Google Scholar]
- Robinson K. R., Jaffe L. F. Polarizing fucoid eggs drive a calcium current through themselves. Science. 1975 Jan 10;187(4171):70–72. doi: 10.1126/science.1167318. [DOI] [PubMed] [Google Scholar]
- Schramm M., Thomas G., Towart R., Franckowiak G. Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature. 1983 Jun 9;303(5917):535–537. doi: 10.1038/303535a0. [DOI] [PubMed] [Google Scholar]
- Shaw S. L., Quatrano R. S. Polar localization of a dihydropyridine receptor on living Fucus zygotes. J Cell Sci. 1996 Feb;109(Pt 2):335–342. doi: 10.1242/jcs.109.2.335. [DOI] [PubMed] [Google Scholar]
- Sinclair W., Oliver I., Maher P., Trewavas A. The role of calmodulin in the gravitropic response of the Arabidopsis thaliana agr-3 mutant. Planta. 1996;199(3):343–351. doi: 10.1007/BF00195725. [DOI] [PubMed] [Google Scholar]
- Watterson D. M., Iverson D. B., Van Eldik L. J. Spinach calmodulin: isolation, characterization, and comparison with vertebrate calmodulins. Biochemistry. 1980 Dec 9;19(25):5762–5768. doi: 10.1021/bi00566a015. [DOI] [PubMed] [Google Scholar]